If the arithmetic mean of a and b is an + bnan - 1 + bn - 1, then the value of n is
- 1
0
1
None of the above
12! + 14! + 16! + ...1 + 13! + 15! + ... equals
e + 1
e - 1e + 1
e - 1
None of these
The sum of the series
a - ba + 12a - ba2 + 13a - ba3 + ... ∞ is
logeab
logea - ba
logeba
The harmonic mean of the roots of the equation
5 + 2x2 - 4 + 5x + 8 + 25 = 0 is
2
4
6
8
The sum of n terms of the following series 1 + (1 + x) + (1 + x + x2) +... will be
1 - xn1 - x
x1 - xn1 - x
n1 - x - x1 - xn1 - x2
C.
We have, 1 + 1 + x + 1 + x + x2 + ... + (1 + x + x2 + ... + xn - 1) ...∴ Required sum = 11 - x1 - x + 1 - x2+ 1 - x3 + ... upto n terms= 11 - xn - x + x2 + x3 + ... upto n terms= 11 - xn - x1 - xn1 - x= n1 - x - x1 - xn1 - x2
If A1, A2; G1, G2 and H1, H2 be two AM's, GM's and HM's between two quantities, then the value of G1G2H1H2 is
A1 + A2H1 + H2
A1 - A2H1 + H2
A1 + A2H1 - H2
A1 - A2H1 - H2
12 + 1 + 22 + 2 + 32 + 3 + ... + n2 + n is equal to
nn + 12
nn + 122
nn + 1n + 23
nn + 1n + 2n + 34
21/4 . 41/8 . 81/16 . 161/32 ... is equal to
32
52
∑- 1rCrn12r + 3r22r + 7r23r + 15r24r + ... m terms is
2mn - 12mn2n - 1
2mn - 12n - 1
2mn + 12n + 1
If n = (1999)!, Then ∑x = 11999lognx is equal to
19991999