Suppose A, B are two points on 2x - y + 3 = 0 and P (1, 2) is suc

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

121.

If a straight line perpendicular to 2x - 3y + 7 = 0 forma triangle with the co-ordinate axes whose area is 3 sq. units, then the equation of the straight line is

  • 3x + 2y = ± 2

  • 3x + 2y = ± 6

  • 3x + 2y = ± 4

  • 3x + 2y = ± 8


122.

If ( - 2, 6) is the image of the point (4, 2) with respect to the line L = 0, then L is equal to

  • 6x - 4y - 7 = 0

  • 2x + 3y - 5 = 0

  • 3x - 2y + 5 = 0 

  • 3x - 2y + 10 = 0


123.

If the co-ordinate axes are the bisectors of the angles between the pair of lines ax2 + 2hxy + by2 = 0 where h2 >ab and a  b, then

  • a + b = 0 

  • h = 0

  • h  0, a + b = 0

  • a + b  0


124.

If the angle 20 is acute, then the acute angle between the pair of straight lines x2cosθ - sinθ + 2xycosθ + y2cosθ + sinθ = 0

  • 2θ

  • θ2

  • θ3

  • θ


Advertisement
125.

If the lines 4x + 3y - 1 = 0, x - y + 5 = 0 and kx + 5y - 3 are concurrent, then k is equal to

  • 4

  • 5

  • 6

  • 7


126.

If the pair of straight lines given by Ax2 + 2Hxy + By2 = 0 (H2 > AB) forms an equilateral triangle with line ax + by + c = 0, then (A + 3B)(3A + B) is equal to :

  • H2

  • - H2

  • 2H2

  • 4H2


127.

The area (in sq units) of the quadrilateral formed by two pairs of lines λ2x2 - m2y2 - nλx + my = 0 and λ2x2 - m2y2 + nλx + my = 0 is :

  • n22λm

  • n2λm

  • n2λm

  • n24λm


Advertisement

128.

Suppose A, B are two points on 2x - y + 3 = 0 and P (1, 2) is such that PA = PB. Then, the mid-point of AB is

  • - 15, 135

  •  - 75, 95

  •  75, - 95

  •  - 75, - 95


A.

- 15, 135

Since AP = BP and P is perpendicular to the line 2x - y + 3 = 0 ...iTherefore its slope is - 12 Equation of line PM isY - 2 = - 12x - 1 2y + x - 5 = 0    ...iiOn solving Eqs. i and ii, we getthe mid-point  of AB is M- 15, 135


Advertisement
Advertisement
129.

The angle between the lines represented by

y2sin2θ - xysin2θ + x2cos2θ - 1 = 0  is

  • π3

  • π4

  • π6

  • π2


130.

Area of the triangle formed by the lines 3x2 + 4xy + y2 = 0, 2x - y = 6 is

  • 16 sq. units

  • 25 sq. units

  • 36 sq. units

  • 49 sq. units


Advertisement