The area (in sq. units) of the triangle formed by the lines x2 -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

181.

If the image of - 76, - 65 in a line is 1, 2, then the equation of the line is

  • 4x + 3y = 1

  • 3x - y = 0

  • 4x - y = 0

  • 3x + 4y = 1


182.

If a line l passes through (k, 2k), (3k, 3k) and (3, 1), k  0, then the distance from the origin to the line is

  • 15

  • 45

  • 35

  • 25


Advertisement

183.

The area (in sq. units) of the triangle formed by the lines x2 - 3y + y = 0 and x + y + 1 = 0, is

  • 23

  • 32

  • 52

  • 125


D.

125

Given equations of line arex2 - 3xy +y2 = 0and x + y + 1 = 0Let, m1 and m2 be the slope of the line x2 - 3xy + y2 = 2 m1 + m2 = - coefficient of xyCoefficient of y2= + 31 = 3                  ...   iand m1m2 = Coefficient of x2Coefficient of y2= 11 = 1                     ...    iiNow, m1 - m2 = m1 + m22 - 4m1m2= 32 - 4 × 1= 9 - 4 = 5 m1 - m2 = 5      ...  iii

On solving eqs. (i) and (iii), we get

m1 = 3 + 52and m2 = 3 - 52 Equation of lines will bey = 3 + 52x             ...ivand y = 3 - 52x    ...vand third line is givenx +y +1 = 0            ...vi The points of intersection of these lines areA0, 0, B- 25 + 5, 3 + 55 + 5, and C- 25 - 5, 3 - 55 - 5 Area of triangle= 12001- 25 + 53 + 55 + 51- 25 - 53 - 55 - 51= 120 + 0 + 1- 23 - 552 - 52 + 23 + 552 - 52= 124520 = 125


Advertisement
184.

If x2 + αy2 +2βy = α2 represents a pair of perpendicular lines, then p equals to

  • 4a

  • a

  • 2a

  • 3a


Advertisement
185.

The condition for the lines lx + my + n = 0 and l1a + m1y + n1 = 0 to be conjugate with respect to the circle x2 + y2 = r2, is

  • r2(ll1 + mm1) = nn1

  • r2(ll1 - mm1) = nn1

  • r2(ll1 + mm1) + nn= 0

  • r2(lm1 + l1m) = nn1


186.

If the line joining A(1, 3, 4) and B is divided by the point    (- 2, 3, 5) in the ratio 1 : 3, then B is

  • (- 11, 3 , 8)

  • (- 11, 3 , - 8)

  • (8, 12 , 20)

  • (13, 6 , - 13)


187.

If the direction cosines of two lines are given by l + m + n = 0 and l- 5m2 + n2 = 0, then the angle between them is

  • π2

  • π6

  • π4

  • π3


188.

If A(3, 4, 5), B(4, 6, 3), C( - 1, 2, 4) and D(1, 0, 5) are such that the angle between the lines DC and AB is θ , then cosθ is equal to

  • 79

  • 29

  • 49

  • 59


Advertisement
189.

If the point P(1, 3) undergoes the following transformations successively.

(i) Reflection with respect to the line y = x.

(ii) Translation through 3 units along the positive direction of the X-axis.

(iii) Rotation through an angle of π6 about the origin in the clockwise direction.Then, the final position of the point P is

  • 63 + 12, 3 - 62

  • 72, - 52

  • 6 + 32, 1 -  632

  • 6 + 3 - 12, 6 + 32


190.

The shortest distance between the skew linesr^ = i^ + 2j^ + 3k^ + ti^ + 3j^ + 2k^ and r^ = 4i^ + 5j^ + 6k^ + t2i^ + 3j^ + k^ is

  • 6

  • 3

  • 23

  • 3


Advertisement