If the straight lines x - 21 = y -&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

131.

The straight line passing through the point (1, 0, - 2) and perpendicular to the plane x - 2y + 5z - 7 = 0 is

  • x - 11 = y0 = z - 5- 2

  • x - 15 = y- 2 = z + 21

  • x - 5- 2 = y - 1- 5 = z1

  • x - 11 = y- 2 = z + 25


132.

The equation of the plane passing through (1, 2, 3) and parallel to 3x - 2y + 4z = 5 is

  • 3x - 2y + 4z = 11

  • 3x - 2y + 4z = 0

  • 3x - 2y + 4z = 10

  • 3(x - 1) - 2(y - 2) + 4(z - 3) = 5


Advertisement

133.

If the straight lines x - 21 = y - 31 = z - 40 and x - 1k = y - 42 = z - 51 are copalnar then, the value of k is

  • - 3

  • 0

  • 1

  • - 2


B.

0

Given lines, x - 21 = y - 31 = z - 40and              x - 1k = y - 42 = z - 51Let l1 = 1, m1 = 1, n1 = 0and l2 = k, m2 = 2, n2 = 1Condition of coplanarity, ie, intersecting lines1 - 24 - 35 - 4110k21 = 0- 2 + 2 - k = 0               k = 0


Advertisement
134.

The line x - x10 = y - y11 = z - z12 is

  • perpendicular to the x-axis

  • perpendicular to the yz-plane

  • parallel to the y-axis

  • parallel to the xz-plane


Advertisement
135.

The point which divides the line joining the points (1, 3, 4) and (4, 3, 1) internally in the ratio 2 : 1, is

  • (2, - 3, 3)

  • (2, 3, 3)

  • 52, 3, 52

  • (3, 3, 2)


136.

The angle between the lines x - 71 = y + 3- 5 = z3 and 2 - x- 7 = y2 = z + 51 is equal to

  • π4

  • π3

  • π2

  • π6


137.

The equation of the plane which is equidistant from the two parallel planes 2x - 2y + z + 3= 0 and 4x - 4y + 2z + 9 = 0 is

  • 8x - 8y + 4z + 15 = 0

  • 8x - 8y + 4z - 15 = 0

  • 8x - 8y + 4z + 3 = 0

  • 8x - 8y + 4z - 3 = 0


138.

The angle between the planes 3x + 4y + 5z = 3 and 4x - 3y + 5z = 9 is equal to

  • π2

  • π4

  • π6

  • π3


Advertisement
139.

The vector equation of the plane through the point (2, 1, - 1) and parallel to the plane r - (i + 3j - k) = 0 is

  • r . (i + 9j + 11k) = 6

  • r . (i - 9j + 11k) = 4

  • r . (i + 3j - k) = 6

  • r . (i + 3j - k) = 4


140.

If the foot of the perpendicular drawn from the point (5, 1, - 3) to a plane is (1, - 1, 3), then the equation of the plane is

  • 2x + y - 3z + 8 = 0

  • 2x + y + 3z + 8 = 0

  • 2x - y - 3z + 8 = 0

  • 2x - y + 3z + 8 = 0


Advertisement