The distance between the planes r . (i + 2j - 2k) + 5 = 0 and r .

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

141.

The equation of the plane through the line of intersection of the planes x - y + z + 3 = 0 and x + y + 22 + 1 = 0 and parallel to x-axis is

  • 2y - z = 2

  • 2y + z = 2

  • 4y + z = 4

  • y - 2z = 3


142.

If 3p + 2q = i + j + k and 3p - 2q = i - j - k, then the angle between p and q is

  • π6

  • π4

  • π3

  • π2

     


143.

The point of intersection of the straight line x - 22 = y - 1- 3 = z + 21 with the plane x + 3y - z + 1 = 0 is

  • (3, - 1, 1)

  • (- 5, 1, - 1)

  • (2, 0, 3)

  • (4, - 2, - 1)


144.

If the lines 2x - 12 = 3 - y1 = z - 13 and x + 32 = z + 1p = y + 25 are perpendicular to each other, then p is equal to

  • 1

  • - 1

  • 10

  • 75


Advertisement
145.

The point P(x, y, z) lies in the first octant and its distance from the origin is 12 units. If the position vector of P make 45° and 60° with the x-axis and y-axis respectively, then the coordinates of P are

  • 33, 6, 32

  • 43, 8, 42

  • 62, 6, 6

  • 6, 6, 62


Advertisement

146.

The distance between the planes r . (i + 2j - 2k) + 5 = 0 and r . (2i + 4j - 4k) - 16 = 0 is

  • 3

  • 113

  • 13

  • 133


D.

133

Given equation of planes in vector form are

         r · (i + 2j - 2k) + 5 = 0

and r . (2i + 4j - 4k) - 16 = 0

Equation of planes in cartesian form are

         x + 2y - 2z + 5 = 0      ...(i)

and 2x + 4y - 4z - 16 = 0

or       x + 2y - 2z - 8 = 0      ...(ii)

We observe that both planes are parallel to each other.

 Required distance = 5 + 81 + 4 + 4 = 133


Advertisement
147.

If the angle θ between the line x + 11 = y - 12 = z - 22 and the plane 2x - y + pz + 4 = 0 is such that sinθ = 13, then the value of p is

  • 0

  • 13

  • 23

  • 53


148.

The ratio in which the plane y - 1 = 0 divides the straight line joining (1, - 1, 3) and (- 2, 5, 4) is

  • 1 : 2

  • 3 : 1

  • 5 : 2

  • 1 : 3


Advertisement
149.

Equation of the line passing through i + j - 3k and perpendicular to the plane 2x - 4y + 3z + 5 = 0 is

  • x - 12 = 1 - y- 4 = z - 33

  • x - 12 = 1 - y4 = z + 33

  • x - 21 = y + 41 = z - 33

  • x - 1- 2 = 1 - y- 4 = z - 33


150.

The angle between the straight lines x - 1 = 2y + 33 = z +52 and x = 3r + 2; y = - 2r - 1; z = 2, where r is a parameter, is

  • π4

  • cos-1- 3182

  • sin-1- 3182

  • π2


Advertisement