Foot of the perpendicular drawn from the origin to the plane 2x -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

151.

Equation of the line through the point (2, 3, 1) and parallel to the line of intersection of the planes x - 2y - z + 5 = 0 and x + y + 3z = 6 is

  • x - 2- 5 = y - 3- 4 = z - 13

  • x - 25 = y - 3- 4 = z - 13

  • x - 25 = y - 3- 4 = z - 13

  • x - 24 = y - 34 = z - 12


152.

The angle between a normal to the plane 2x - y + 2z - 1 = 0 and the Z-axis is

  • cos-113

  • sin-123

  • cos-123

  • sin-113


Advertisement

153.

Foot of the perpendicular drawn from the origin to the plane 2x - 3y + 4z = 29 is

  • (5, - 1, 4)

  • (7, - 1, 3)

  • (5, - 2, 3)

  • (2, - 3, 4)


D.

(2, - 3, 4)

Let the foot of the perpendicular in the 2x - 3y + 4z = 29 be Pα, β, γ.

So, the point α, β, γ satisfy the given plane.

 2α - 3β + 4γ = 29        ...iNow DR's of PO is α, β, γ, where O is origin.

Since, OF is perpendicular to the given plane. Therefore, normal to the plane is parallel to OF.

 α2 = β- 3 = γ4 = k α = 2k, β = - 3k and γ = 4k

On putting the value of α, β and γ in Eq.(i), we get

2(2k) - 3(- 3k) + 4(4k) = 29

 4k + 9k + 16k = 29 29k = 29  k = 1     α = 2, β = - 3 and γ = 4

Hence, foot of perpendicular is (2, - 3, 4).


Advertisement
154.

The distance between the X-axis and the point (3, 12, 5) is

  • 3

  • 13

  • 14

  • 12


Advertisement
155.

The angle between the lines 2x = 3 y = - z and 6x = - y = - 4z is

  • π6

  • π4

  • π3

  • π2


156.

The projection of the line segment joining (2, 0, - 3) and (5, - 1, 2) on a straight line whose direction ratios are 2, 4, 4, is

  • 116

  • 103

  • 133

  • 113


157.

The angle between the straight line r = i^ + 2j^ + k^ + i^ - j^ + k^ and the plane r . 2i^ - j^ + k^ = 4 is

  • sin-1223

  • sin-126

  • sin-123

  • sin-123


158.

If a straight line makes angles α, β, γ with the coordinate axes, then 1 - tan2α1 - tan2α + 1sec2β - 2sin2γ is equal to

  • - 1

  • 1

  • - 2

  • 2


Advertisement
159.

The equation of the plane which bisects the· line segment joining the points (3, 2, 6) and (5, 4, 8) and is perpendicular to the same line segment, is

  • x + y + z = 16

  • x + y + z = 10

  • x + y + z = 12

  • x + y + z = 14


160.

The foot of the perpendicular from the point (1, 6, 3) to the line x1 = y - 12 = z - 23 is

  • (1, 3, 5)

  • (- 1, - 1, - 1)

  • (2, 5, 8)

  • (- 2, - 3, - 4)


Advertisement