A circular wire of radius 7 cm is cut and bend again into an arc

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

The angles of a triangle are in the ratio 1 : 3 : 5. Then the greatest angle is :

  • 5π9

  • 2π9

  • 7π9

  • 11π9


Advertisement

192.

A circular wire of radius 7 cm is cut and bend again into an arc of a circle of radius 12 cm. Then angle subtended by the arc at the centre is:

  • 50°

  • 210°

  • 100°

  • 60°


B.

210°

Length of wire = 2πr = 2 × 227 × 7

                     = 44 cm

Let θ be the angle subtended by an arc at the centre.

 44 = 227 × 2 × 12 × θ360°  θ = 44 × 7 × 360°22 × 2 × 12         = 210°


Advertisement
193.

The radius of the circle x2 + y2 + z2 - 2y - 4z - 11 = 0 and x + 2y + 2z - 15 = 0 is :

  • 3

  • 5

  • 7

  • 3


194.

If a + b + c = 0, a = 3, b = 5 and c = 7, then angle between a and b is :

  • 0

  • 30°

  • 45°

  • 60°


Advertisement
195.

The points A (4, 5, 1), B (0, - 1, - 1), C(3, 9, 4) and D(- 4, 4, 4) are

  • collinear

  • coplanar

  • non-coplanar

  • non-collinear


196.

If a + b + c = 0, a = 3, b = 5 and c = 7, then the angle between a and b is :

  • π3

  • π2

  • cos-12225

  • π4


197.

The shortest distance from the point (1, 2, - 1) to the surface of the sphere x2 + y2 + z2 = 24 is :

  • 36 unit

  • 6 unit

  • 26

  • 2 sq unit


198.

The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8) is :

  • x - y - z - 15 = 0

  • x - y - z - 15 = 0

  • x + y + z - 15 = 0

  • x + y + z + 15 = 0


Advertisement
199.

A line makes acute angles of α, β and γ with the co-ordinate axes such that cosαcosβ = cosβcosγ = 29 and cosγcosα = 49, then cosα + cosβ + cosγ is equal to :

  • 259

  • 59

  • 53

  • 23


200.

The equation of the plane through the point (1, 2, 3), (- 1,  4, 2) and (3, 1, 1) is :

  • 5x + y + 12z - 23 = 0

  • 5x + 6y + 2z - 23 = 0

  • x + 6y + 2z - 13 = 0

  • x + y + z - 13 = 0


Advertisement