Let α and β be two distinct roots

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

In a AABC, if C = 90°, r and R are the inradius and circumradius of the ABC respectively, then 2(r + R) is equal to

  • b + c

  • c + a

  • a + b

  • a + b + c


Advertisement

32.

Let α and β be two distinct roots of acosθ + bsinθ = c  where a, b, c are three real constants and θ  0, 2π. Then, α + β is also a root of the same equation, if

  • a + b = c

  • b + c = a

  • c + a = b

  • c = a


D.

c = a

Given equation is acosθ + bsinθ = c

 a1 - tan2θ21 + tan2θ2 + 2btanθ21 + tan2θ2 = c cosθ = 1 - tan2θ21 + tan2θ2  and sinθ = 2btanθ21 + tan2θ2

 a1 - tan2θ2 + 2btanθ2 = c1 +  tan2θ2 a - a tan2θ2 + 2b tanθ2 - c - c tan2θ2 = 0 c + a tan2θ2 - 2b tanθ2 + c - a = 0Let α and β  be the roots of the equation. α + β = 2bc + a and αβ = c - ac + a

Now, tanα + β2 = 2bc +a1 - c - ac + a                             = 2bc + ac +a - c + ac + a                             = ba

Since, ba is a root of the equation.

 c +ab2a2 - 2bba + c - a = 0 b2c + b2a - 2b2a + ca2 - a3 = 0 - b2a + b2c + ca2 - a3 = 0 b2c - b2a + ca2 - a3 = 0 b2c - a + a2c - a = 0 c - ab2 + a2 = 0 c - a = 0 or b2 + a2 = 0 c = a or b2 + a2 = 0


Advertisement
33.

If cosx and sinx are solutions of the differential equation

a0d2ydx2 + a1dydx + a2y = 0

where a0, a1 and a2 are real constants, then which of the following is/are always true?

  • Acosx + Bsinx is a solution, where A and B are real constants 

  • Acosx + π4 is a solution, where A is a real constant

  • Acosxsinx is a solution, where A is a real constant

  • Acosx + π4 + Bsinx - π4 is a souton, where A and B are real constants 


34.

Which of the following statements is /are correct for 0 < θ < π2

  • cosθ1/2  cosθ2

  • cosθ3/4  cos3θ4

  • cos5θ6  cosθ5/6

  • cos7θ8  cosθ7/8


Advertisement
35.

The value of tanπ2 + 2tan2π5 + 4cot4π5 is

  • cotπ5

  • cot2π5

  • cot4π5

  • cot3π5


36.

The range of the function y = 3sinπ216 - x2 is

  • 0, 3/2

  • [0, 1]

  • 0, 3/2

  • 0, 


37.

In a ABC,  a, b, c are the sides of the triangle opposite to the angles A, B, C, respectively. Then, the value of a3sin(B - C) + b3sin(C - A) + c3sin(A - B) is equal to

  • 0

  • 1

  • 3

  • 2


38.

cos2π7 + cos4π7 + cos6π7

  • is equal to zero

  • lies between 0 and 3

  • is a negative number

  • lies between 3 and 6


Advertisement
39.

The minimum value of 2sinx + 2cosx is

  • 21 - 1/2

  • 21 + 1/2

  • 22

  • 2


40.

If p = cosπ4- sinπ4sinπ4cosπ4 and X = 1212. Then, p3X is equal to

  • 01

  • - 1212

  • - 10

  • - 12- 12


Advertisement