If sinAsinC = sinA - BsinB - C

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

141.

If α and β are the solutions of atanθ + bsecθ = c, then tanα + β is equal

  • 2aca2 - c2

  • 2acc2 - a2

  • 2aca2 + c2

  • None of these


142.

If sin-1x5 + csc-154 = π2, then x is equal to

  • 4

  • 5

  • 1

  • 3


Advertisement

143.

If sinAsinC = sinA - BsinB - C, then a2, b2, c2 are in

  • AP

  • GP

  • HP

  • None of these


A.

AP

sinAsinC = sinA - BsinB - CsinAsinC = sinA . cosB - cosA . sinBsinB . cosC - cosB . sinCaKcK = aKcosB - bKcosAbKcosC - cKcosB         sinAa = sinBb = sinCc = Kac = acosB - bcosAbcosC - ccosB          cosA = b2 + c2 - a22bccosB = a2 + c2 - b22accosC = a2 + b2 - c22abac = a2 + c2 - b22c - b2 + c2 - a22ca2 + b2 - c22a - a2 + c2 - b22a

    = aca2 + c2 - b2 - c2 - b2 + a2a2 + b2 - c2 - a2 - c2 + b21 = 2a2 - 2b22b2 - 2c2 1 = a2 - b2b2 - c2 b2 - c2 = a2 - b2       2b2 = a2 + b2Hence, a2, b2, c2 are in AP.


Advertisement
144.

If A = 60°, a = 5, b = 43 in ABC, then B is equal to

  • 30°

  • 60°

  • 90°

  • None of these


Advertisement
145.

If y = sin2(x)cos2(x), then yn is equal to

  • 4n8 . cos4x + 2

  • - 1n 4n8 . cos4x + 2

  • - 4n8 . cos4x + 2

  • None of the above


146.

In a ABC, if cot(A) cot(B) cot(C) > 0, then the triangle is

  • acute angled

  • right angled

  • obtuse angled

  • does not exist


147.

If 1 + sinθ - cosθ 1 + sinθ + cosθ2 = λ1 - cosθ1 +cosθ, then λ equals

  • - 1

  • 1

  • 2

  • - 2


148.

If a line makes angles α, β, γ with x-axis, y-axis and z-axis respectively, then sin2α + sin2β + sin2γ equals

  • 1

  • 2

  • 3

  • - 1


Advertisement
149.

A man 2 m tall walks at a uniform speed of 5 km/h away from a lamp post 6 m high. The rate at which the length of his shadow increases, is

  • 2.5km/h

  • 5km/h

  • 15km/h

  • 53 km/h


150.

If b + c = 3a, then the value of cotB2cotC2 is

  • 2

  • 3

  • 2

  • 1


Advertisement