The solution set of 5 + 4cosθ

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

311.

If the equation cos4θ + sin4θ + λ = 0 has real solutions for θ, then λ lies in interval :

  •  - 54, - 1

  •  - 1, - 12

  • - 12, - 14

  •  - 32, - 54


312.

The set of all possible values of θ in the interval (0, π) for which the points(1, 2) and (sin(θ), cos(θ)) lie on the same side of the line x + y = 1 is

  • 0, π2

  • 0, π4

  • π4, 3π4

  • 0, 3π4


313.

Solve L = sin2π16 -  sin2π8 andM = cos2π16 -  cos2π8

  • M = 142 + 14cosπ8

  • M = 122 + 12cosπ8

  • L =  - L = - 122 + 12cosπ8

  • L = 142 - 14cosπ8


314.

The angle of elevation of the summit of a mountain from a point on the ground is 45º. After climbing up one km towards the summitat an inclination of 30º from the ground, the angle of elevation of the summit is found to be 60º. Then the height (in km) of the summit from the ground is

  • 3 + 13 - 1

  • 13 + 1

  • 13 - 1

  • 3 - 13 + 1


Advertisement
315.

If y = y = Acosnx + Bsinnx, then y2 + n2y is equal to

  • 0

  • 1

  • y

  • - 1


316.

If A, B, C, D are angles of a cyclic quadrilateral,then cosA + cosB + cosC + cosD is equal to

  • 0

  • 1

  • - 1

  • 4


317.

The equation 3sinx + cosx =4,has

  • only one solution

  • two solution

  • infinitely many solution

  • No solution


Advertisement

318.

The solution set of 5 + 4cosθ2cosθ + 1 = 0 in the interval 0, 2π, is :

  • π3, 2π3

  • π3, π

  • 2π3, 4π3

  • 2π3, 5π3


C.

2π3, 4π3

We have, 5 + 4cosθ2cosθ + 1 = 0     ...i                                cosθ  = 1 - tan2θ21 +  tan2θ2,                              cosθ = 1 - t21 + t2      put  tanθ2 = tThen Eq.i beecomes             5 + 41 - t21 + t221 - t21 + t2 +1 = 0  5 + 5t2 + 4 - 4t22 - 2t2 + 1 + t2 = 0                                       t2 + 93 - t2 = 0                                                               t = ± 3 tanθ2 = 3 or tanθ2 = - 3 

 θ2 = π3 or θ2 = 2π3        θ = 2π3 or  4π3


Advertisement
Advertisement
319.

If tan3AtanA = a, then sin3AsinA is equal to

  • 2aa + 1

  • 2aa - 1

  • aa + 1

  • aa - 1


320.

If cos(A - B) = 3/5 and tan(A)tan(B) = 2, then which one of the following is true ?

  • sinA + B = 15

  • sinA + B = - 15

  • cosA - B = 15

  • cosA + B = - 15


Advertisement