If asin2θ + bcos2θ = c,then&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

261.

P is a point on the segment joining the feet of two vertical poles of heights a and b. The angles of elevation of the tops of the poles from P are 45° each. Then, the square of the distance between the tops of the poles is

  • a2 + b22

  • a2 + b2

  • 2a2 + b2

  • 4a2 + b2


262.

The transformed equation of x2 + y= rwhen the axes are rotated through an angle 36° is

  • 5X2 - 4XY + Y2 = r2

  • X2 + 2XY - 5Y2 = r2 

  • X2 - Y2 = r2

  • X2 + Y2 = r2


263.

The period of tanθ - 13tan3θ13 - tan2θ - 1,where tan2θ  13 is

  • π3

  • 2π3

  • π

  • 2π


Advertisement

264.

If asin2θ + bcos2θ = c,then tan2θ = ?

  • b - ca - c

  • c - ba - c

  • a - cb - c

  • a - cc - b


B.

c - ba - c

asin2θ + bcos2θ = cOn dividing both side by cos2θa tan2θ + b = csec2θ atan2θ + b = c1 + tan2θ atan2θ + b = c + ctan2θ b = c + ctan2θ - atan2θ b - c = c - atan2θ tan2θ = b - cc - a or c - ba - c


Advertisement
Advertisement
265.

If cos(x - y), cos(x), cos(x + y) are three distinct numbers which are in harmoric progression and cos(x)  cos(y), then 1 + cos(y) is equal to

  • cos2x

  • - cos2x

  • cos2x - 1

  • cos2x - 2


266.

The  set  of  solutions  of  the  equation 3 - 1sinθ + 3 + 1cosθ = 2 is

  • 2 ± π4 + π12 : n  Z

  • 2 ± π4 - π12 : n  Z

  •  + - 1nπ4 + π12 : n  Z

  •  + - 1nπ4 - π12 : n  Z


267.

If  = a2 - b - c2, is the area of the ABC,then tanA = ?

  • 116

  • 815

  • 34

  • 43


268.

In a ABC, C = 90°. Then, a2 - b2a2 + b2 = ?

  • sin(A + B)

  • sin(A - B)

  • cos(A + B)

  • cos(A - B)


Advertisement
269.

The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then, the height of the tower is

  • a2b

  • ab2

  • ab

  • ab


270.

If 1° = α. radians, then the approximate value of cos(60° 1') is

  • 12 + α3120

  • 12 - α120

  • 12 - α3120

  • 12 + α120


Advertisement