If in the angles of a triangle are in the ratio1 : 1 : 4, then th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

281.

If 3sinx + 4cosx = 5, then 6tanx2 - 9tan2x2 = ?

  • 3

  • 2

  • 1

  • 0


282.

If  α, β, γ are length of the altitudes of a ABC with area , then 2R21α2 + 1β2 + 1γ2 = ?

  • sin2A + sin2B + sin2C 

  • cos2A + cos2B + cos2C

  • tan2A + tan2B + tan2C 

  • cot2A + cot2B + cot2C 


283.

In an acute angled triangle, cot(B)cot(C) + cot(A)cot(C) + cot(A)cot(B) = ?

  • - 1

  • 0

  • 1

  • 2


284.

x = log1y + 1 + 1y2  y = ?

  • tanhx

  • cothx

  • sechx

  • cschx


Advertisement
285.

The period of f(x) = cosx3 + sinx2 is

  • 2π

  • 4π

  • 8π

  • 12π


286.

If sinθ + cosθ = p and sin3θ + cos3θ = q, then p(p2 - 3) is equal to

  • q

  • 2q

  • - q

  • - 2q


287.

If tanπcosθ = cotπsinθ, then a value of cosθ - π4 among the following is

  • 122

  • 12

  • 12

  • 14


288.

The  set  of solutions  of the  system  of equationsx + y = 2π3and cosx + cosy = 32,where x, y are real, is

  • x, ycosx - y2 = 12

  • x, ysinx - y2 = 12

  • x, ycosx - y = 12

  • Empty set


Advertisement
Advertisement

289.

If in the angles of a triangle are in the ratio1 : 1 : 4, then the ratio of the perimeter of the triangle to its largest side is

  • 2 + 2 : 3

  • 3 : 2

  • 3 + 2 . 2

  • 2 + 3 : 3


D.

2 + 3 : 3

Given, the ratio of angles of a triangle is 1 : 1 : 4Let angles of a triangle are A, B and C A : B : C = 1 : 1 : 4Let A = x, B = x and C = 4x A + B + C = 180° x +x+ 4x = 180°              6x = 180° A = 30°, B = 30° and C = 120°Hence, largest angle Is 120° So largest side ofa triangle is c. Perimeter of triangle = Largest side of a triangle = a + b + c : c = 2Rsin30° + 2Rsin30° + 2Rsin120° : 2Rsin120°      a = 2RsinA, b = 2RsinB and C = 2RsinC = 2R12 + 12 + 32 : 2R × 32 = 1 + 32 : 32 = 2 +3 : 3


Advertisement
290.

If cosx = tany, coty = tanz and cotz = tanx then sinx = ?

  • 5 + 14

  • 5 - 14

  • 5 + 12

  • 5 - 12


Advertisement