If a→, b→ and c→ are perpendicular to b→ + c→, c→ + a→ and a→ + b→ respectively and, if a→ + b→ = 6, b→ + c→ = 8 and c→ + a→ = 10, then a→ + b→ + c→ is equal to :
52
50
102
10
A vector perpendicular to 2i^ + j^ + k^ and coplanar with i^ + 2j^ + k^ and i^ + j^ + 2k^ is :
5j^ - k^
i^ + 7j^ - k^
5j^ + k^
2i^ - j^ - k^
If a→ = 2i^ - 3j^ + pk^ and a→ × b→ = a→ = 4i^ + 2j^ - 2k^, then p is :
0
- 1
1
2
Let a→ = i^ - j^, b→ = j^ - k^, c→ = k^ - i^. If d→ is a unit vector such that a→ . d→ = 0 = b→ c→ d→, then d→ is (are) :
± i^ + j^ - k^3
± i^ + j^ - 2k^6
± i^ + j^ + k^3
± k^
If a→ and b→ are unit vectors such that a→ b→ a→ × b→ = 14, then angle between a→ and b→ is :
π3
π4
π6
π2
If A→ = i^ + 2j^ + 3k^, B→ = - i^ + 2j^ + 3k^ and C→ = 3i^ + j^, then A→ + tB→ is perpendicular to C→, if t is equal to :
- 5
4
5
- 4
The magnitude of the projection of the vector 2i^ + 3j^ + k^ on the vector perpendicular to the plane containing the vectors i^ + j^ + k^ and i^ + 2j^ + 3k^ is
32
36
6
Let a→ = 3i^ + 2j^ + xk^ and b→ = i^ - j^ + k^ , for some real x. Then a→ × b→ = r is possible if :
0 < r ≤ 32
32 < r ≤ 332
332 < r ≤ 532
r ≥ 532
If unit vector a→ makes angles π3 with i^, π4, with j^ and θ ∈ 0, π with k^, then a value of θ is
2π3
5π6
5π12
Let α = 3i^ + j^ and β = 2i^ - j^ + 3k^. If β = β1 - β2, where β1 is paralle to α and β2 is perpendicular to α, then β1 × β2
12- 3i + 9j + 5k
123i - 9j + 5k
3i - 9j - 5k
- 3i + 9j + 5k