Important Questions of Vector Algebra Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
381.

The scalar A · {(B + C) x (A + B + C)} equals

  • [ABC][BCA]

  • [ABC]

  • 0

  • None of these


382.

The points with position vectors 60i + 3j, 40i - 8 j and ai - 52j are collinear, if

  • a = - 40

  • a = 40

  • a = - 20

  • a = 20


383.

If θ is the angle between vectors p = ai + bj + ck and q = bi + cj + ak, then θ lies in

  • 0, π2

  • π2, π

  • π2, 2π3

  • 0, 2π3


384.

If a, b and c are non-coplanar vectors and p = b × ca b c, q = q = c × aa b c and r = a × ba b c, then a . p + b . q + c . r is equal to

  • 3

  • - 3

  • 0

  • None of the above


Advertisement
385.

If a = 2i - 3j + 6k and b = - 2i + 2i - k, then Projection of a on bProjection of b on a is equal to

  • 1

  • 7/3

  • 3/7

  • - 1/6


386.

The value of i + j . j + k × k + i is

  • 0

  • 1

  • - 1

  • 2


387.

If a^ and b^ are unit vectors and 0 is the angle between them, then sinθ2 is equal to

  • a^ + b^2

  • a^ - b^2

  • a^ - b^2

  • a^ - b^


388.

If a, b and c are three non-zero, non-coplanar vectors, then the value of a x a' + b x b'+ c x c' is

  • 1

  • 0

  • - 1

  • None of the above


Advertisement
389.

Three concurrent edges of a parallelopiped are given by

       a = 2i^ - 3j^ + k^       b = i^ - j^ + 2k^and c = 2i^ + j^ - k^

The volume of the parallelopiped is

  • 14 cu units

  • 20 cu units

  • 25 cu units

  • 60 cu units


390.

The number of vectors of unit length perpendicular to vectors a = i^ + j^ and b = j^ + k^

  • infinite

  • one

  • two

  • three


Advertisement