The position vectors of the points A and B with respect to O are

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

If a, b, c be three unit vectors such that a × b × c = 12bb and c being non-parallel. If θ1 is the angle between a and b and θ2 is the angle between a and c, then

  • θ1 = π6, θ2 = π3

  • θ1 = π3, θ2 = π6

  • θ1 = π2, θ2 = π3

  • θ1 = π3, θ2 = π2


62.

The r2 - r . c + h = 0c > h, represents

  • circle

  • ellipse

  • cone

  • sphere


63.

a = i^ - j^ + k^ and b = 2i^ + 4j^ + 3k^ are one of the sides and medians respectively, of a triangle through the same vertex, then area of the triangle is

  • 1283

  • 83

  • 1285

  • 86


64.

If b is a unit vector, then a . bb + ba × b is :

  • a2 b

  • a . ba

  • a

  • b


Advertisement
Advertisement

65.

The position vectors of the points A and B with respect to O are 2i + 2j + k and 2i + 4j+ 4k. The length of the internal bisector of BOA of AOB is

  • 1369

  • 1363

  • 203

  • 2179


B.

1363

              OA = 2i + 2j +kand            OB = 2i + 4j + 4kWe have, OA = 4 +4 +1 = 3and      OB = 4 + 16 + 16 = 6 Required vector = λOA+OB= λ132i + 2j + k + 162i + 4j + 4k= λ132i + 2j + k + i + 2j + 2k= λ33i + 4j + 3k Length of vector = λ39 + 16 + 9                               = λ334Take λ = 2  Require length of a vector is 1363.


Advertisement
66.

Given (a x b) x (c x d) = 5c x 6d, then the value of (a . b) x (a + c + 2d) is

  • 7

  • 16

  • - 1

  • 4


67.

Let a, b and c be non-zero vectors such that a × b × c = - 14bca.  If θ the acute angle between the vectors b and c, then the angle between a and c is equal to

  • 2π3

  • π4

  • π3

  • π2


68.

A vector of magnitude 12 unit perpendicular to the plane containing the vectors 4i + 6j - k and 3i + 8j + k is

  • - 8i + 4j + 8k

  • 8i + 4j + 8k

  • 8i - 4j + 8k

  • 8i - 4j - 8k


Advertisement
69.

Forces of magnitudes 3 and 4 unit acting alon 6i + 2j + 3k and 3i - 2j + 6k, respectively act on a particle and displace it from (2, 2,- 1) to (4, 3, 1). The work done is

  • 1247

  • 1207

  • 1257

  • 1217


70.

If ABCD be a parallelogram and M be the point of intersection of the diagonals. If O is any point, then OA + OB + OC + OD is

  • 3OM

  • 4OM

  • OM

  • 2OM


Advertisement