If a is perpendicular to b, then the vector a ×&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

91.

If the vectors a = 2i^ + j^ + 4k^, b = 4i^ - 2j^ + 3k^ and c = 2i^ - 3j^ - λk^ are coplanar, then the value of λ is equal to

  • 2

  • 1

  • 3

  • - 1


92.

Let A(1, - 1, 2) and B (2, 3, - 1) be two points. If a point P divides AB internally in the ratio 2 : 3, then the position vector of P is

  • 15i^ + j^ + k^

  • 13i^ +  6j^ + k^

  • 13i^ + j^ + k^

  • 157i^ + 3j^ + 4k^


93.

If the scalar product of the vector i^ + j^ + 2k^ with the unit vector along mi^ + 2j^ + 3k^ is equal to 2, then one of the values of m is

  • 3

  • 4

  • 5

  • 6


94.

The vector equation of the straight line 1 - x3 = y + 1- 2 = 3 - z- 1 is

  • r = i^ - j^ + 3k^ + λ3i^ + 2j^ - k^

  • r = i^ - j^ + 3k^ + λ3i^ - 2j^ - k^

  • r = 3i^ - 2j^ - k^ + λi^ - j^ + 3k^

  • r = 3i^ + 2j^ - k^ + λi^ - j^ + 3k^


Advertisement
Advertisement

95.

If a is perpendicular to b, then the vector a × a × a × a × b is equal to

  • a2b

  • ab

  • a3b

  • a4b


D.

a4b

Given, a  b a . b = 0= a × a × a × a × b= a × a × a . ba - a . ab= a × a × 0 - a . ab= a × - a . aa × b= a × a . ab × a= a . aa × b × a= a . aa . ab - a . ba= a . aa . ab - 0= a . a2b                   a . a = a2= a22b= a4b


Advertisement
96.

If the vector 8i + aj of magnitude 10 is in the direction of the vector 4i + 3j, then the value of equal to

  • 6

  • 3

  • - 3

  • - 6


97.

If a = 2i - 7j + k and b = i + 3j - 5k and a · mb = 120, then the value of m is equal to

  • 5

  • - 24

  • - 5

  • 120


98.

The position vector of the centroid of the ABC is 2i + 4 j + 2k. If the position vector of the vertex A is 2i + 6j + 4k, then the position vector of midpoint of BC is

  • 2i + 3j + k

  • 2i + 3j - k

  • 2i - 3j - k

  • - 2i - 3j - k


Advertisement
99.

If the vectors 3i - 4j - k and 2i + 3j - 6k represent the diagonals of a rhombus, then the length of the side of the rhombus is

  • 15

  • 153

  • 532

  • 1532


100.

If a = 2i + 3j + αk and b = 3i - αj + 2k, then the angle between a + b and a-b is equal to

  • 0

  • π6

  • π4

  • π2


Advertisement