A unit vector coplanar with i^ + j^ + 2k^&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

151.

Two vectors a and b of equal magnitude 5 originating from a point and directs respectively towards north-east and north-west. Then the magnitude of a - b is :

  • 32

  • 23

  • 25

  • 52


152.

ABCD is a quadrilateral, P, Q are the mid points of BC and AD, then AB + DC is equal to :

  • 3QP

  • QP

  • 4QP

  • 2QP


153.

If a, b, c are are the three vectors mutually perpendicular to each other and a = 1, b = 3 and c = 5, then a - 2b, b - 3c, c - 4a is equal to

  • 0

  • - 24

  • 3600

  • - 215


Advertisement

154.

A unit vector coplanar with i^ + j^ + 2k^ and i^ + 2j^ + k^, and perpendicular to i^ + j^ + k^ is :

  • j^ - k^2

  • i^ + j^ + k^3

  • i^ + j^ + 2k^6

  • i^ + 2j^ + k^6


A.

j^ - k^2

Let unit vector ai^ + bj^ + ck^ ai^ + bj^ + ck^ is to i^ + j^ + k^,then a +b+c = 0             ...(i)and ai^ + bj^ + ck^, i^ + 2j^ + k^ and i^ + j^ + 2k^ are coplanar abc112121 = 0 - 3a + b +c = 0      ...iiFrom Eqs. (i) and (ii), we geta = 0 and c = - b ai^ + bj^ + ck^ is a unit vectorthen a2 + b2 + c2 = 1 0 + b2 + b2 = 1 b = 12 ai^ + bj^ + ck^ = 12j^ - 12k^                          = j^ - k^2


Advertisement
Advertisement
155.

Forces acting on a particle have magnitude 5, 3 and 1 unit and act in the direction of the vectors 6i^ + 2j^ + 3k^, 3i^ - 2j^ + 6k^ and 2i^ - 3j^ - 6k^ respectively. They remain constant while the particle is displaced from the point A (2, - 1, - 3) to B (5, - 1, 1). The work done is :

  • 11 unit

  • 33 unit

  • 10 unit

  • 30 unit


156.

If a = b = 1 and a + b = 3, then the value of 3a - 4b . 2a + 5b is :

  • - 21

  • - 212

  • 21

  • 212


157.

If a = 3, b = 4, c = 5 and a, b, c are such that each is perpendicular to the sum of other two, then a + b + c is :

  • 52

  • 52

  • 102

  • 103


158.

If a, b, c are unit vectors, then  2a - b, 2b - c, 2c - a is equal to :

  • 1

  • 0

  • - 3


Advertisement
159.

If u, v, w be vectors such that u + v + w = 0  and u = 3, v = 4, w = 5, then u . v + v . w + w . u is equal to :

  • 47

  • - 47

  • 0

  • - 25


160.

If a is perpendicular  to b and c,   a = 2, b = 3, c = 4 and the angle between b and c is 2π3, then a b c is equal to :

  • 43

  • 63

  • 123

  • 183


Advertisement