Let α = 3i^ + j^ and &be

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

161.

If a, b and c are perpendicular  to b + c, c + a and a + b respectively and, if   a + b = 6, b + c = 8 and c + a = 10, then a + b + c is equal to :

  • 52

  • 50

  • 102

  • 10


162.

A vector perpendicular to 2i^ + j^ + k^ and coplanar with i^ + 2j^ + k^ and i^ + j^ + 2k^ is :

  • 5j^ - k^

  • i^ + 7j^ - k^

  • 5j^ + k^

  • 2i^ - j^ - k^


163.

If a = 2i^ - 3j^ + pk^ and a × b = a = 4i^ + 2j^ - 2k^, then p is :

  • 0

  • - 1

  • 1

  • 2


164.

Let a = i^ - j^, b = j^ - k^, c = k^ - i^. If d is a unit vector such that a . d = 0 = b c d, then d is (are) :

  • ± i^ + j^ - k^3

  • ± i^ + j^ - 2k^6

  • ± i^ + j^ + k^3

  • ± k^


Advertisement
165.

If a and b are unit vectors such that a b a × b = 14, then angle between a and b is :

  • π3

  • π4

  • π6

  • π2


166.

If A = i^ + 2j^ + 3k^, B = - i^ + 2j^ + 3k^ and C = 3i^ + j^, then A + tB is perpendicular to C, if t is equal to :

  • - 5

  • 4

  • 5

  • - 4


167.

The magnitude of the projection of the vector 2i^ + 3j^ + k^ on the vector perpendicular to the plane containing the vectors i^ + j^ + k^ and i^ + 2j^ + 3k^ is

  • 32

  • 36

  • 6

  • 32


168.

Let a = 3i^ + 2j^ + xk^ and b = i^ - j^ + k^ , for some real x. Then a × b = r is possible if :

  • 0 < r  32

  • 32 < r  332

  • 332 < r  532

  • r  532


Advertisement
169.

If unit vector a makes angles π3 with i^, π4, with j^ and θ  0, π with k^, then a value of θ is

  • 2π3

  • 5π6

  • 5π12

  • π4


Advertisement

170.

Let α = 3i^ + j^ and β = 2i^ - j^ + 3k^. If β = β1 - β2, where β1 is paralle to α and β2 is perpendicular to α, then β1 × β2

  • 12- 3i + 9j + 5k

  • 123i - 9j + 5k

  • 3i - 9j - 5k

  • - 3i + 9j + 5k


A.

12- 3i + 9j + 5k

Let β1 = k1α, β2 = k2i - 3j + λkGiven, β = β1 - β2Equating i^, j^, k^ coefficient, we getk1 = 12, k = - 12β1 × β2 = 12- 3i + 9j + 5k


Advertisement
Advertisement