The distance of the point having position vector - i^ + 2j^ + 6k^ from the straight line passing through the point (2, 3, - 4) and parallel to the vector 6i^ + 3j^ - 4k^ is :
213
7
6
43
A force F→ = 3i^ - j^ acts on a point R (0, 1, 1), then the moment of a force about the point P(0, 1, 0) is
3k^
i^ + 3j^
- i^ - 3j^
i^ + 3j^ - 3k^
B.
Given, R = (0, 1, 1) = j^ + k^and P = 0, 1, 0 = j^∴ r→ = j^ + k^ - j^ = k^and F→ = 3i^ - j^Then, the required moment is given byr→ × F→ = k^ × 3i^ - j^ = i^j^k^0013- 10 = - i^ + 3j^
Let a→ and b→ are non-zero and non-collinear vectors. If there exists scalars α, β such that αa→ + βb→ = 0→, then
α = β ≠ 0
α + β = 0
α = β = 0
α ≠ β
If G is centroid of ∆ABC, then
G→ = a→ + b→ + c→
G→ = a→ + b→ + c→2
3G→ = a→ + b→ + c→
3G→ = a→ + b→ + c→2
Let a→, b→ and c→ be vectors with magnitudes 3, 4 and 5 respectively and a→ + b→ + c→ = 0→, then a→ . b→ + b→ . c→ + c→ . a→ is
47
25
50
- 25
If vectors i^ + j^ + k^, i^ - j^ + k^ and 2i^ + 3j^ + λk^ are coplanar, then λ is equal to
- 2
3
2
- 3
Given, a→ ⊥ b→, a→ = 1 and if a→ + 3b→2a→ - b→ = - 10, b→ is equal to
1
4
a→ + b→ b→ + c→ c→ + a→ = a→ b→ c→, then
a→ b→ c→ = 1
a→ b→ c→ are coplanar
a→ b→ c→ = - 1
a→ b→ c→ are mutually perpendicular
Area of rhombus is ..., where diagonals are a→ = 2i^ - 3j^ + 5k^ and b→ = - i^ + j^ + k^
21.5
31.5
28.5
38.5
a→ . b→ × c→b→ . c→ × a→ + b→ . a→ × b→a→ . b→ ×c → is equal to
0
∞