If a→ = b→ = 1 and a→ + b→ = 3, then the value of 3a→ - 4b→ . 2a→ + 5b→ is
- 21
- 212
21
212
If a→ is perpendicular to b→ and c→, a→ = 2, b→ = 3, c→ = 4 and the angle between b→ and c→ is 2π3, then [a→ b→ c→] is equal to
43
63
123
183
If a→, b→ and c→ are perpendicular to b→ + c→, c→ + a→ and a→ + b→ respectively and if a→ + b→ = 6, b→ + c→ = 8 and c→ + a→ = 10 then a→ + b→ + c→ is equal to
52
50
102
10
If the vectors a→ + λb→ + 3c→, - 2a→ + 3b→ - 4c→ and a→ - 3b→ + 5c→ are coplanar, then the value of λ is
2
- 1
1
- 2
If a→ + b→ + c→ = 0→, a→ = 3, b→ = 5, c→ = 7, then anle between a→ and b→ is
π6
2π3
5π3
π3
If the vectors a→ = i^ + aj^ + a2k^, b→= i^ + bj^ + b2k^ and c→ = i^ + cj^ + c2k^ are three non-coplanar vectors and aa21 + a3bb21 + b3cc21 + c3 = 0, then the value of abc is
0
Let a→ = 2i^ - j^ + k^, b→ = i^ + 2j^ - k^ and c→ = i^ + j^ - 2k^ be three vectors. A vector in the plane of b→ and c→ whose projection on a→ is magnitude 23, is
2i^ + 3j^ - 3k^
2i^ + 3j^ + 3k^
2i^ - 5j^ + 5k^
2i^ + j^ + 5k^
If the constant forces 2i^ - 5j^ + 6k^ and - i^ + 2j^ - k^act on a particle due to which it is displaced from a point A (4,- 3, - 2) to a point B (6, 1,- 3), then the work done by the forces is
15 unit
9 unit
- 15 unit
- 9 unit
C.
Resultant force,F→ = 2i^ - 5j^ + 6k^ + - i^ + 2j^ - k^ = i^ - 3j^ + 5k^Displacement,d→ = AB→ = 6i^ + j^ - 3k^ - 4i^ - 3j^ - 2k^ = 2i^ + 4j^ - k^W = F→ . d→ = i^ - 3j^ + 5k^ . 2i^ + 4j^ - k^ = 2 - 12 - 5 = - 15 unit
If a→ . i^ = 4, then a→ × j^ . 2j^ - 3k^ is equal to
12
- 12
a→ × a→ × a→ × b→ is equal to
a→ × a→ . b→ × a→
a→ . b→ × a→ - b→a→ × b→
a→ . a→ × b→a→
a→ . a→ b→ × a→