If the circle passes through the point (a, b) and cuts the circle

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

281.

Given that a = 3, b = 4, a × b = 10, then a . b2  equals :

  • 88

  • 44

  • 22

  • None of these


282.

If two like parallel to forces of PQ N and OP N have a resultant 2 N, then :

  • P = Q

  • 2P = Q

  • P= Q

  • P = 2Q


283.

The value of a + b b + c c + a is :

  • 2a b c

  • a b c

  • 1

  • None of these


284.

If a = 2i^ + j^ + k^, b = i^ - 2j^ + k^, c = i^ + j^ + k^, then a × b × c equals :

  • 5i^ - 7j^ - 3k^

  • 5i^ + 7j^ - 3k^

  • 5i^ - 7j^ + 3k^

  • zero


Advertisement
285.

If AB × AC = 2i^ - 4j^ + 4k^, then the area of  ABC is :

  • 3 sq unit

  • 4 sq unit

  • 16 sq unit

  • 9 sq unit


286.

If a = 1, p, 1, b = q, 2, 2, a . b = r and a × b = (0, - 3, - 3), then p, q, r are in that order :

  • 1, 5, 9

  • 9, 5, 1

  • 5, 1, 9

  • None of these


Advertisement

287.

If the circle passes through the point (a, b) and cuts the circle x2 + y2 = k orthogonally, then the locus of its centre is given by :

  • 2ax + 2by - (a2 + b2 + k2) = 0

  • 2ax + 2by - (a2 + b2 - k2) = 0

  • 2ax + 2by + (a2 + b2 + k2) = 0

  • None of these


A.

2ax + 2by - (a2 + b2 + k2) = 0

Let the equation of circle be x2 + y2 + 2gx + 2fy + c = 0Its centre is (- g,- f).This is orthogonal to given circle         x2 + y2 = k2 g(0)+ f(0) = c - k2               c = k2 From Eq. (i)x2 + y2 + 2gx + 2fy + k2 = 0Also, this circle passes through (a, b) a2 + b2 + 2ga + 2fb + k2 = 0Locus of centre (- g, - f) is       a2 + b2 - 2xa - 2yb + k2 = 0 2ax + 2by - (a2 + b2 + k2) = 0


Advertisement
288.

Let a, b, c be distinct non-negative numbers. If the vectors ai^ + aj^ + ck^i^ + k^ and ci^ + cj^ + bk^ lie in a plane, then :

  • c2 = ab

  • a2 = bc

  • b2 = ac

  • None of these


Advertisement
289.

a and b are two non-zero vectors, then a + b . a - b is equal to :

  • a + b

  • (a - b)2

  • (a + b)2

  • (a2 - b2)


290.

Angle between the vectors 3a × b and b - a . ba is :

  • π2

  • 0

  • π4

  • π3


Advertisement