The values of λ, such that (x, y, z) if (0, 0, 0) and 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

391.

If a = i^ - 2j^5 and b = 2i^ + j^ + 3k^14 are vectors in space, then the value of 2a +b . a × b × a - 2b is

  • 0

  • 1

  • 5

  • 4


392.

The value of i^ . j^ × k^ + j^ . k^ × i^ + k^ . i^ × j^ is

  • 0

  • 1

  • 3

  • - 3


Advertisement

393.

The values of λ, such that (x, y, z) if (0, 0, 0) and i^ + j^ + 3k^x + 3i^ - 3j^ + k^y + - 4i^ + 5j^ are

  • 0, 1

  • - 1, 1

  • - 1, 0

  • - 2, 0


C.

- 1, 0

Given, i^ + j^ + 3k^x + 3i^ - 3j^ + k^y + - 4i^ + 5j^z = λi^x + j^y + k^zOn equating the coefficients of i^, j^ and k^ both sides, we have     x +3y - 4z = λx     x - 3y + 5z = λyand 3x + y + 0 = λzAbove three equations can be rewritten as1 - λx + 3y - 4z = 0  x - 3 + λy + 5z = 0            3x + y - λz = 0

This is homogeneous system of equations in three vanables x, y and z.

It is consistent and have non-zero solution

i.e., (x, y, z) (0, 0, 0), If determinant of coefficient matrix is zero.

 1 - λ3- 41- 3 + λ531- λ = 0On expanding along first row, we have1 - λλ3 + λ - 5 - 3- λ - 15 - 41 + 9 + 3λ = 0 1 - λλ2 + 3λ - 5 + 3λ + 45 - 40 - 12λ = 0         λ2 + 3λ - 5 - λ3 - 3λ2 + 5λ - 9λ + 5 = 0 - λ3 - 2λ2 - λ = 0   λλ2 + 2λ + 1 = 0            λλ + 12 = 0                         λ = 0, - 1


Advertisement
394.

If G and G' are respectively centroid of ABC and A' B' C', then AA' + BB' + CC' is equal to

  • 2GG'

  • 3GG'

  • 23GG'

  • 13GG'


Advertisement
395.

If a = 3i^ - 4j^ + 5k^, b = i^ + j^ + k^ and c = - 2i^ + 3j^ - 5k^, and if [·] is the least integer function, then [a + b + c] is equal to

  • 1

  • 2

  • 3

  • 0


396.

If a = - i^ + j^ + k^ and b = 2i^ + k^, then the vector satisfyin the following conditions

(i) it is coplanar witha and b,

(ii) it is perpendicular to b and

(iii) a · c = 7, is

  • - i^ + 2j^ + 2k^

  • - 32i^ + 52j^ + 3k^

  • - 3i^ + 5j^ + 6k^

  • - 6i^ + k^


397.

If the vectors b = tanα, - 1, 2sinα2 and c = tanα, tanα,  - 3sinα2 are orthagonal and  a vector a = 1, 3, sin2α makes an obtuse angle with the Z-axis, then the value of α is

  • 4n + 2π + tan-12

  • 4n + 2π - tan-12

  • 4n + 1π + tan-12

  • 4n + 1π - tan-12


398.

r . i^2 + r . j^2 + r . k^2 is equal to

  • 0

  • 1

  • r2

  • 3r2


Advertisement
399.

The component of i^ + j^ along j^ and k^ will be

  • i^ + j^2

  • j^ + k^2

  • k^ + i^2

  • None of these


400.

If a = 2i^ + 5j^ and b = 2i^ - j^, then the unit vector along a + b will be

  • i^ - j^2

  • i^ + j^

  • 2i^ + j^

  • i^ + j^2


Advertisement