If a→ + b→ + c→ =&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

421.

Observe the following statements

A. Three vectors are coplanar if one of them is expressible as a linear combination of the other two.

R. Any three coplanar vectors are linearly dependent.Then, which of the following is true ?

  • Both A and R are true and R is the correct explainaton of A

  • Both A and R are true but R is not the correct explainaton of A

  • A is true, but R is false

  • A is false, but R is true


 Multiple Choice QuestionsMatch The Following

422.

Observe the following lists
List I List II
(A) [a b c] 1. abcosab
(B) c × a × b 2 .(a . c)b - (a . b) c
(C) a × b × c 3. a . b × c
(D) a . b 4. ab
  5. (b . c)a - (a . b)c

Then the correct match for List I from List II is

A. A B C D (i) 1 2 3 4
B. A B C D (ii) 3 5 2 1
C. A B C D (iii) 3 5 5 1
D. A B C D (iv) 3 2 5 1

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

423.

If a + b + c = 0 and a = 3, b = 4 and c = 37, then the angle between a and b is : 

  • π4

  • π2

  • π6

  • π3


D.

π3

Since   a + b + c = 0                a + b = -  c           a + b2 = -  c2 a2 + b2  + 2abcosθ = c 2                 9 + 16 + 2 3 4 cosθ = 37 24cosθ = 37 - 25     cosθ = 12 =cosπ3             θ = π3


Advertisement
424.

If i^ - 3j^ + k^ and λi^ + 3j^ are coplaner, then λ = ?

  • - 1

  • 12

  • - 32

  • 2


Advertisement
425.

The position vector of a point lying on the line joining the points whose positions vectors are i^ + j^ - k^ and i^ - j^ + k^ is :

  • j^

  • i^

  • k^

  • 0


426.

If the volume of parallelopiped with conterminus edges 4i^ + 5j^ + k^, - j^ + k^ and 3i^ + 9j^ + pk^ is 34 cubic units, then p is equal

  • 4

  • - 13

  • 13

  • 6


427.

a . i^ = a2i^ + j^ = ai^ + j^ + 3k^ = 1, then a is equal to

  • i^ - k^

  • 133i^ + 3j^ + k^

  • 13i^ + j^ + k^

  • 133i^ - 3j^ + k^


428.

If the points  whose position  vectors are 2i^ + j^ +k^, 6i^ - j^ +2k^ and 14i^ - 5j^ + pk^are collinear, then the value of p is

  • 2

  • 4

  • 6

  • 8


Advertisement
429.

The ratio in which i^ + 2j^+ 3k^ divides the join of - 2i^ + 3j^ +5k^ and 7i^ - k^ is

  • 2 : 1

  • 2 : 3

  • 3 : 4

  • 1 : 4


430.

If a = i^ - j^ - k^ and  b = + λi^ - 3j^ + k^ and the orthogonal projection ofb on a is 43i^ - j^ - k^, then λ = ?

  • 0

  • 2

  • 12

  • - 1


Advertisement