The points whose position vectors are 2i + 3j + 4k, 3i + 4j + 2k

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

451.

A class has fifteen boys and five girls.Suppose three students are selected at random from the class. The probability that there are two boys and one girl is

  • 3576

  • 3538

  • 776

  • 3572


452.

a = i + j - 2k  a × i × j2 = ?

  • 6

  • 6

  • 36

  • 66


453.

Let a, b and c be three non-coplanar vectors and let p, q and r be the vectors defined by

p = b × cabc, q = c × aabc,  r = a × babc Then,a + b . p + b + c . q + c + a . r = ?

  • 0

  • 1

  • 2

  • 3


454.

Let a = i + 2j + k, b = i - j + k, c = i + j - k.

A vector in the plane of a and b has projection 13 on c. Then, one such vector is

  • 4i + j - 4k

  • 3i + j - 3k

  • 4i - j + 4k

  • 2i + j + 2k


Advertisement
455.

The point if intersection of the lines

l1 : r(t) = (i - 6j + 2k) + t(i + 2j + k)

l: R(u) = (4j + k) + u(2i + j + 2k) is

  • (10, 12, 11)

  • (4, 4, 5)

  • (6, 4, 7)

  • (8, 8, 9)


456.

The vectors AB = 3i - 2j + 2k and BC = i - 2k are the adjacent sides of a parallelogram. The angle between its diagonals is

  • π2

  • π3 or 2π3

  • 3π4 or π4

  • None of these


Advertisement

457.

The points whose position vectors are 2i + 3j + 4k, 3i + 4j + 2k and 4i + 2j + 3k are the vertices of

  • an isosceles triangle

  • Right angled triangle

  • Equilateral triangle

  • Right angled isosceles triangle


C.

Equilateral triangle

Let a = 2i + 3j + 4k = OA       b = 3i + 4j + 2k = OBand c = 4i + 2j + 3k = OCAB = OB - OA = i + j - 2kBC = OC - OB = i - 2j + kand CA = OA - OC = - 2i + j + kNow, AB = 1 + 1 + 4 = 6BC = 1 + 4 + 1 = 6and  CA = 4 + 1 + 1 = 6Since, the length of all three sides are equal So, the triangle is an equilateral triangle


Advertisement
458.

P, Q, R and S are four pots with the position vectors 3i - 4j + 5k, - 4i + 5j + k and - 3i + 4j + 3k respectively. Then, the line PQ meets the line RS at the point

  • 3i + 4j + 3k

  • - 3i + 4j + 3k

  • - i + 4j + k

  • i + j + k


Advertisement
459.

If a  0, b  0, c  0, a × b = 0 and b × c = 0, then a × c = ?

  • b

  • a

  • 0

  • i + j + k


460.

The shortest distance between r = 3i + 5j + 7k + λ(i + 2j + k) and r = - i - j - k + μ(7i - 6j + k) is

  • 1655

  • 2655

  • 3655

  • 4655


Advertisement