What are the order and degree, respectively, of the differential

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

11.

What are the order and degree, respectively, of the differential equation d3ydx32 = y4 + dydx5 ?

  • 4, 5

  • 2, 3

  • 3, 2

  • 5, 4


C.

3, 2

d3ydx32 = y4 + dydx5  Order = 3Degree = 2


Advertisement
12.

The differential equation of the family of curves y = pcos (ax) + qsin(ax), where p, q are arbitrary constants, is

  • d2ydx2 - a2y = 0

  • d2ydx2 - ay = 0

  • d2ydx2 + ay = 0

  • d2ydx2  + a2y = 0


13.

The equation of the curve passing through the point ( - 1, - 2)   which  satisfies  dydx = - x2 - 1x3, is

  • 17x2y - 6x2 + 3x5 - 2 = 0

  • 6x2y + 17x2 + 2x5 - 3 = 0

  • 6xy - 2x2 + 17x5 + 3 = 0

  • 17x2y + 6xy - 3x5 +5 = 0


14.

What is the order of the differential equation whose solution is 

y = acosx + bsinx +ce - x =d, where a, b, c and d are arbitrary constants ?

  • 1

  • 2

  • 3

  • 4


Advertisement
15.

What  is the solution  of the differential equationlndydx = ax + by ?

  • axax  + beby = c

  • 1aeax + 1beby = 0

  • aeax + be - bx = c

  • 1beax +1be - by = c


16.

If μ = eaxsinbx and ν = eaxcosbx, then what is μdudx + vdvdx = ?

  • ae2ax

  • a2 + b2eax

  • abe2ax

  • a + beax


17.

If y = sinlnx, then which one of the following is correct ?

  • d2ydx2 + y = 0

  • d2ydx2 = 0

  • x2d2ydx2 + xdydx + y = 0

  • x2d2ydx2 - xdydx + y = 0


18.

What is the solution  of the differential equationdxdy = x + y + 1x + y - 1 ?

  • y - x + ln(x + y) = c

  • y + x + 2ln(x + y) = c

  • y - x + 2ln(x + y) = c

  • y + x + 2ln(x + y) = c


Advertisement
19.

What is limxπ62sin2x + sinx - 12sin2x - 3sinx + 1 = ?

  • - 12

  •  - 13

  •  - 2

  •  - 3


20.

What is d2ydy2 = ?

  • - d2ydx2 - 1dydx - 3

  • d2ydx2 - 1dydx - 2

  • - d2ydx2dydx - 3

  •  d2ydx2 - 1


Advertisement