Consider the integralI1 = ∫ 0πx1&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

What is  - 22xdx -  - 22xdx

  • 0

  • 1

  • 2

  • 4


32.

If  - 25fxdx = 4 and 051 + fxdx = 7

then what is  - 20f(x)dx = ?

  •  - 3

  • 2

  • 3

  • 5


33.

What is 04πcosxdx = ?

  • 0

  • 2

  • 4

  • 8


34.

Let f(x) be a function such thaf'1x + x3f'x = 0. What is  - 11f(x)dx = ?

  • 2f(1)

  • 0

  • 2f( - 1)

  • 4f(1)


Advertisement
35.

What is x4 - 1x2x4 + x2 + 1dx = ?

  • x4 +x2 + 1 4 + c

  • x2 +2 - 1x2  + c

  • x2 + 1x2 + 1 + c

  • x4 - x2 + 1x +c


36.

What is esinxxcos3x - sinxcos2xdx = ?

  • x + secxesinx +c

  • x - secxesinx +c

  • x + tanxesinx +c

  • x - tanxesinx +c


37.

If 0π2dx3cosx 5 = kcot-12, then what is the value of k ?

  • 14

  • 12

  • 1

  • 2


38.

What is 131 - x4dx  = ?

  • - 2325

  • - 1165

  • 1165

  • 2325


Advertisement
Advertisement

39.

Consider the integralI1 =  0πx1 + sinxdx  andI2 =  0ππ - xdx1 - sinπ +x

What is the value of I1 + I2 ?

  • 2π

  • π

  • π2

  • 0


A.

2π

Consider the integralI1 =  0πx1 + sinxdx  Then, with the help of the property, we can write I1 =  0πx1 + sinxdx   ... iAs :I1 =  0ππ + 0 - xdx1 - sinπ +0 -x I1 =  0ππ - xdx1 + sinπ -xI1  =  0ππ - x1 + sinxdx     ...iiNow, add equations (i) and ii, we get2I1 =  0πx1 + sinxdx 2I1 = π 0π1 - sinx1 + sinx1 - sinxdx 2I1 = πsec2x - secxtanxdx2I1 = πtanx - secx0π2I1 = 1 -  - 12I1 = 2π  I1 = πNow I2 =  0ππ - xdx1 - sinπ +xWe will again the property of integrationThenI2 =  0ππ + 0 -  (π - x)dx1 - sinπ + 0 -  (π - x)I2 =  0π xdx1 - sin - xI2 =  0π xdx1 + sinx = I1 = πHence I1 + I2 = 2πSo option A is correct


Advertisement
40.

Consider the integralI1 = 0πx1 + sinxdx and I2 = 0ππ - xdx1 - sinπ +x

What is the value of I1

  • 0

  • π2

  • π

  • 2π


Advertisement