What is ∫ - 22xdx - ∫ - 22xdx
0
1
2
4
If ∫ - 25fxdx = 4 and ∫051 + fxdx = 7
then what is ∫ - 20f(x)dx = ?
- 3
3
5
What is ∫04πcosxdx = ?
8
Let f(x) be a function such that f'1x + x3f'x = 0. What is ∫ - 11f(x)dx = ?
2f(1)
2f( - 1)
4f(1)
What is ∫x4 - 1x2x4 + x2 + 1dx = ?
x4 + x2 + 1 4 + c
x2 + 2 - 1x2 + c
x2 + 1x2 + 1 + c
x4 - x2 + 1x + c
What is ∫esinxxcos3x - sinxcos2xdx = ?
x + secxesinx + c
x - secxesinx + c
x + tanxesinx + c
x - tanxesinx + c
If ∫0π2dx3cosx 5 = kcot-12, then what is the value of k ?
14
12
What is ∫131 - x4dx = ?
- 2325
- 1165
1165
2325
Consider the integralI1 = ∫ 0πx1 + sinxdx andI2 = ∫ 0ππ - xdx1 - sinπ + x
What is the value of I1 + I2 ?
2π
π
π2
A.
Consider the integralI1 = ∫ 0πx1 + sinxdx Then, with the help of the property, we can write I1 = ∫ 0πx1 + sinxdx ... iAs :I1 = ∫ 0ππ + 0 - xdx1 - sinπ +0 - x I1 = ∫ 0ππ - xdx1 + sinπ - xI1 = ∫ 0ππ - x1 + sinxdx ...iiNow, add equations (i) and ii, we get2I1 = ∫ 0πx1 + sinxdx 2I1 = π∫ 0π1 - sinx1 + sinx1 - sinxdx 2I1 = πsec2x - secxtanxdx2I1 = πtanx - secx0π2I1 = 1 - - 12I1 = 2π I1 = πNow I2 = ∫ 0ππ - xdx1 - sinπ + xWe will again the property of integrationThenI2 = ∫ 0ππ + 0 - (π - x)dx1 - sinπ + 0 - (π - x)I2 = ∫ 0π xdx1 - sin - xI2 = ∫ 0π xdx1 + sinx = I1 = πHence I1 + I2 = 2πSo option A is correct
Consider the integralI1 = ∫0πx1 + sinxdx and I2 = ∫0ππ - xdx1 - sinπ + x
What is the value of I1