Let f(x) = x2 + 2x – 5 and g(x) = 5x + 30If h(x)

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

If limx0ϕx = a2, where a  0, then what is limx0ϕxa = ?

  • a2

  • a - 2

  •  - a2

  •  - a


22.

What is limx0e - 1x2 = ?

  • 0

  • 1

  •  - 1

  • limit does not exist


23.

What is f'(x) = ? when x > 1 

  • 0

  • 2x - 1

  • 4x - 2

  • 8x - 4


24.

What if'(x) equal to when 0 x < 1 ?

  • 0

  • 2x - 1

  • 4x - 2

  • 8x - 4


Advertisement
25.

Let f(x) = ex - 1x, x > 00,             x = 0

be a real valued function.

Which one of the following statements is correct ?

  • f (x) is a strictly decreasing function in (0, x)

  • f(x) is a strictly increasing function in (0, x)

  • f(x) is neither increasing nor decreasing in (0, x).

  • f(x) is not decreasing in (0, x)


26.

Let f(x) = ex - 1x, x > 00,             x = 0

be a real valued function.

Which one of the following statements is correct ?

  1. f(x) is right continuous at x = 0.
  2. f(x) is discontinuous at x = 1.

Select the correct answer using the code given below

  • 1 only

  • 2 only

  • Both 1 and 2

  • Neither 1 nor 2


Advertisement

27.

Let f(x) = x2 + 2x – 5 and g(x) = 5x + 30

If h(x) = 5 f(x) – xg(x), then what is the derivative of h(x)

  •  - 40

  •  - 20

  • - 10

  • 0


B.

 - 20

It is given that h(x) = 5f(x) – xg(x);

We have f(x) = x2 + 2x – 5 and g(x) = 5x + 30

Then h(x) = 5[x2 + 2x – 5] x[5x + 30]

h(x) = 5x2 + 10x 25 5x2 – 30x

h(x) = 20x – 25

then, differentiation of h(x) w.r.t x will give 20 as the result 

hence, option B is correct.


Advertisement
28.

Let f(x) = x2 + 2x – 5 and g(x) = 5x + 30

What are the roots of the equation g[f(x)] = 0 ?

  • 1, - 1

  •  - 1, - 1

  • 1, 1

  • 0, 1


Advertisement
29.

Consider the equation xy = eyWhat is d2ydx2 at  x = 1 equal to ?

  • 0

  • 1

  • 2

  • 4


30.

Consider the equation xy = ey

What is dydx at  x = 1 equal to ?

  • 0

  • 1

  • 2

  • 4


Advertisement