A particle starting from the origin (0,0) moves in a straight line in the (x,y) plane. Its coordinates at a later time are ( ). The path of the particle makes with the x -axis an angle of:
30o
45o C
60o C
60o C
A car moves from X to Y with a uniform speed vu and returns to Y with a uniform speed vd. The average speed for this round trip is:
60o
45o
30o
30o
A particle moving along x- axis has acceleration f, at time t, given f = fo (1-t/T), where fo and T are constants. The particle at t =0 and the instant when f = 0, the particle's velocity (vx) is:
foT
foT2/2
foT2
foT2
For angles of projection of a projectile at angles (45° - θ) and (45° + θ), the horizontal ranges described by the projectile are in the ratio of
1:1
2:3
1:2
1:2
A.
1:1
For complementary angles of projection, their horizontal ranges will be same.
We know that, horizontal ranges for complementary angles of projection will be same.
The projectiles are projected at angles and which are complementary to each other i.e., two angles add up to give . Hence, horizontal ranges will be equal. Thus, the required ratio is 1:1.
A car runs at aconstant speed on a circular track of radius 100 m, taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap respectively is
0, 0
10 m/s, 10m/s
10 m/s, 10m/s
Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t1. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t2. The time taken by her to walk up on the moving escalator will be
A body is projected vertically upwards. The times corresponding to height h while ascending and while descending are t1 and t2, respectively.