Write the vector equations of the following lines and hence deter

Subject

Mathematics

Class

CBSE Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsLong Answer Type

31.

Using integration, find the area of the following region:

  x, y :  x29 + y24  1  x3 + y2 


32.

A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is Rs. 300 and that on a chain is Rs. 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an L.P.P. and solve it graphically


33.

A card form a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn at random and are found to be both clubs. Find  the probability of the lost card being of clubs.


34.

From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


Advertisement
Advertisement

35.

Write the vector equations of the following lines and hence determine the distance between them:

 x -12 = y - 23 = z + 46;    x - 34 = y - 36 = z + 512


Given equation of line is  x - 12 = y - 23 = z + 46This can also be written in the standard form as   x - 12 = y - 23 = z -( - 4 )6

The vector form of the above equation is,

r =  i^ + 2 j^ - 4 k  + λ  2i^ + 3 j^ + 6k   r = a1  + λ b           ......(i)where,    a1  = i^ + 2 j^ - 4 k    and   b = 2i^ + 3 j^ + 6kThe second equation of line is   x - 34 = y - 36 = z + 512The above can also be written as   x - 34 = y - 36 = z - ( - 5 )12

The vector form of this equation is

      r =  3 i^ + 3 j^ - 5 k  + μ  4 i^ + 6 j^ + 12 k  r =  3 i^ + 3 j^ - 5 k  + 2 μ  2 i^ + 3 j^ + 6 k  r = a2  + 2 μ b             .........(ii)Where   a2  =  3 i^ + 3 j^ - 5 k    and   b = 2 i^ + 3 j^ + 6 k

Since  b  is same in equation (i)  and  (ii),  the two lines are parallel.

Distance  d, between the two parallel lines is given by the formula,

d =  b x  a2  - a1   bHere, b =  2 i^ + 3 j^ + 6 k       a2  =   3 i^ + 3 j^ - 5 k   and   a1  =   i^ + 2 j^ - 4 k 

On substitution, we get

d =    2 i^ + 3 j^ + 6 k  x  ( 3 i^ + 3 j^ - 5 k  -   i^ + 2 j^  - 4 k  ) 4 + 9 + 36= 149   2 i^ + 3 j^ + 6 k  x   2 i^ + j^ - k  = 17    i^     j^       k2     3       6 2     1  - 1 = 17  i^  - 3 - 6  - j^  - 2 - 12  + k  2 - 6  =  17  - 9 i^ +14 j^ - 4 k 

= 17   81 + 196 + 16 =  2937Thus, the distance between the two given lines is   2937


Advertisement
Advertisement