Sand is pouring from a pipe at the rate of 12 cm3/s. The falling

Subject

Mathematics

Class

CBSE Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsShort Answer Type

11.

Write the intercept cut off by the plane 2x + y – z = 5 on x-axis.


 Multiple Choice QuestionsLong Answer Type

12.

Prove the following:

cot-1   1 + sin x +  1 - sin x 1 + sin x -  1 - sin x  = x2,   x   0, π4 


13.

Find the value of  tan-1  xy  - tan-1  x - yx + y


14.

Using properties of determinants, prove that

  - a2      ab         ac     ba -b2      bc    ca  cb  - c2  = 4 a2b2c2


Advertisement
15.

Find the value of ‘a’ for which the function f defined as

f ( x ) =  a sin π2 ( x + 1 ),       x  0tan x - sin x x3,            x > 0 

is continuous at x = 0.


16.

Differentiate  X x cos x +  x2 + 1x2 - 1  w.r.t. x


17.

If   x = a  θ - sin θ ,   y =  1 + cos θ ,    find d2ydx2


Advertisement

18.

Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of t heradius of the base. How fast is the sand cone increasing when the height is 4 cm?


The volume of a cone  with radius  r  and height  h  is given by the formula

V = 13 π r2 h

According to the question,

h = 16 r   r = 6 h

Substituting in the formula,

 V = 13 π  6 h 2 h = 12 π h3

The rate of change of the volume with respect to time is

dvdt = 12 π ddh  h 3 x dhdt        ....... By chain rule       =  12 π   3 h 2 x dhdt      = 36 π h2 x dhdt                   .........( i )Given that  dvdt = 12 cm3 / sSubstituting the values dvdt = 12   and  h = 4  in equation ( i ), we have,12 = 36 π  4 2 x dhdt dhdt = 1236 π  16   dhdt = 148 π Hence, the height of the sand cone is increasing at the rate of  148 π  cm / s.


Advertisement
Advertisement
19.

Find the points on the curve  x2 + y2 – 2x – 3= 0  at  whichthe tangents are parallel to x-axis.


20.

Using matrix method, solve the following system of equations:

2x + 3y + 10z = 4,       4x - 6y + 5z,       6x + 9y - 20z;    x, y, z  0


Advertisement