Solve the following differential equation:ex tan y dx + ( 1 -&nbs

Subject

Mathematics

Class

CBSE Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsLong Answer Type

21.

Using elementary transformations, find the inverse of the matrx

 1 3  - 2- 3      0  - 121      0 


22.

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


23.

Evaluate:  5 x + 3 x2 + 4 x + 10 dx


24.

Evaluate:  2x  x2 + 1   x2 + 3  dx


Advertisement
Advertisement

25.

Solve the following differential equation:

ex tan y dx + ( 1 - e) sec2 y dy  = 0


The given differential equation is:

ex tan y dx + ( 1 - e) sec2 y dy  = 0

 ex tan y dx =  - ( 1 - e) sec2 y dy

  ex tan y dx = ( e - 1 ) sec2 y dy

 exex - 1 dx = sec2 ytan y dy

On integrating on both sides,  we get

 exex - 1 dx = sec2 ytan y dy                                  ..........(i)Let  I1 = sec2 ytan y dy Put  tan y = t sec2 y dy = dt  sec2 ytan y dy =  dtt = log  t  = log tan y       .........(ii)Let  I2 =  exex - 1 dx

Put   e - 1 = u

 ex  dx = du

 exex - 1  dx =  duu

                    = log u

                    = log  ( e - 1 )                        ............(iii)

From (i),  (ii),  and  (iii),  we get

log tan y = log  ( e - 1 ) + log C

 log tan y = log  C ( e - 1 ) 

 tan y  = C ( e - 1 ) 

The solution of the given differential equation is  tan y = C ( e - 1 ). 


Advertisement
26.

Solve the following differential equation:

cos2 x dydx + y = tan x


27.

Find a unit vector perpendicular to each of the vector  a + b   and   a - b , where

  a = 3 i^ + 2 j^ + 2 k^   and    b =  i^ + 2 j^ - 2 k^.


28.

Find the angle between the following pair of lines:  

- x + 2- 2 = y - 17 = z + 3- 3   and   x + 2- 1 = 2 y - 84 = z - 54

And check whether the lines are parallel or perpendicular.


Advertisement
29.

Probabilities of solving problem independently by A and B are 12 and 13respectively. If both try to solve the problem independently, find the probability that

(i) the problem is solved

(ii) exactly one of them solves the problem.


30.

Using integration find the area of the triangular region whose sides have equations  y=2x+1,  y=3x+1  and  x=4.


Advertisement