Show that: from Class 12 CBSE Previous Year Board Papers | Math

Subject

Mathematics

Class

CBSE Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsShort Answer Type

1.

Write the element straight a subscript 12 of the matrix straight A space equals space open square brackets straight a subscript ij close square brackets subscript 2 cross times 2 end subscript comma whose elements straight a subscript ij are given by aij space equals space straight e to the power of 2 ix end exponent space sin space jx.

1662 Views

2. If space straight A space equals space open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets comma space then space show space that space straight A squared minus 4 straight A minus 5 straight I space equals 0 comma space and space hence space find space straight A to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space space space space space space space space
616 Views

3. If space straight A space equals space open vertical bar table row 2 cell space space 0 end cell cell negative 1 end cell row 5 cell space 1 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 3 end cell end table close vertical bar comma space then space find thin space straight A to the power of negative 1 end exponent space using space elementary space row space operations.Applying space straight R subscript 3 space rightwards arrow space straight R subscript 3 plus left parenthesis negative 1 right parenthesis straight R subscript 2
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 0 cell space 1 end cell cell space 5 over 2 end cell row 0 cell space 1 end cell cell 1 half end cell end table close square brackets space equals space open square brackets table row cell 1 half end cell cell space space 0 end cell cell space 0 end cell row cell negative 5 over 2 end cell 1 cell space 0 end cell row cell 5 over 2 end cell cell negative 1 end cell cell space 1 end cell end table close square brackets
Applying space straight R subscript 3 space rightwards arrow space left parenthesis 2 right parenthesis straight R subscript 3
straight A to the power of negative 1 end exponent open square brackets table row 1 cell space 0 end cell cell negative 1 half end cell row 0 1 cell space 5 over 2 end cell row 0 cell space 0 end cell 1 end table close square brackets space equals space open square brackets table row cell 1 half end cell 0 cell space space space 0 end cell row cell negative 5 over 2 end cell 1 cell space space 0 end cell row 5 cell negative 2 end cell cell space space 2 end cell end table close square brackets
460 Views

4.

Using the properties of determinants, solve the following for x:

open vertical bar table row cell straight x plus 2 end cell cell space space straight x plus 6 end cell cell space straight x minus 1 end cell row cell straight x plus 6 end cell cell straight x minus 1 end cell cell straight x plus 2 end cell row cell straight x minus 1 end cell cell straight x plus 2 end cell cell straight x plus 6 end cell end table close vertical bar space equals space 0

751 Views

Advertisement
5.

Solve the following for x:

sin to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis minus 2 sin to the power of negative 1 end exponent straight x equals straight pi over 2

536 Views

Advertisement

6.

Show that:
2 sin to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses equals space straight pi over 4


2 sin to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses space equals straight pi over 4
straight L. straight H. straight S. comma
space space space equals cos to the power of negative 1 end exponent open parentheses 1 minus 2 cross times 9 over 25 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space equals cos to the power of negative 1 end exponent open parentheses 7 over 25 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space equals tan to the power of negative 1 end exponent open parentheses 24 over 7 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses 24 over 7 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 24 over 7 end style minus begin display style 17 over 31 end style over denominator 1 plus begin display style 24 over 7 end style cross times begin display style 17 over 31 end style end fraction close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 24 cross times 31 minus 17 cross times 7 over denominator 31 cross times 7 plus 24 cross times 17 end fraction close parentheses
space space space space space space equals tan to the power of negative 1 end exponent open parentheses 625 over 625 close parentheses
space space space space space space equals tan to the power of negative 1 end exponent 1
space space space space space space equals straight pi over 4
space space space space space equals straight R. straight H. straight S space space
space space space Hence space Proved
638 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

7.

Let A = Q × Q, where Q is the set of all rational numbers, and * be a binary operation on A defined by (a, b) * (c, d) = (ac, b+ad) for (a, b), (c, d) element of A. Then find
(i) The identify element of * in A.
(ii) Invertible elements of A, and write the inverse of elements (5, 3) and open parentheses 1 half comma space 4 close parentheses.

1348 Views

8. Let space straight f colon straight W rightwards arrow straight W space be space defined space as
straight f left parenthesis straight n right parenthesis space equals space open curly brackets table row cell straight n minus 1 comma space space if space straight n space is space odd end cell row cell straight n plus 1 comma space if space straight n space is space even end cell end table close curly brackets
Show that f is invertible and find the inverse of f. Here, W is the set of all whole numbers. 
579 Views

Advertisement
9.

Find the absolute maximum and absolute minimum values of the function f given by
straight f left parenthesis straight x right parenthesis space equals sin squared straight x minus cosx comma space straight x space element of space left parenthesis 0 comma space straight pi right parenthesis

619 Views

 Multiple Choice QuestionsShort Answer Type

10.

If straight a with rightwards arrow on top space equals space 2 straight i with hat on top plus straight j with hat on top plus 3 straight k with hat on top space space space and space straight b with rightwards arrow on top space equals space 3 straight i with hat on top space plus space 5 straight j with hat on top space minus space 2 straight k with hat on top comma space then space find space open vertical bar straight a with rightwards arrow on top cross times space straight b with rightwards arrow on top close vertical bar.

1702 Views

Advertisement