If (1 + x)15 = a0 + a1x + ... + a15x15, then ∑r =&n

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMatch The Following

1.

Observe the following lists
List I List II
(A) [a b c] 1. abcosab
(B) c × a × b 2 .(a . c)b - (a . b) c
(C) a × b × c 3. a . b × c
(D) a . b 4. ab
  5. (b . c)a - (a . b)c

Then the correct match for List I from List II is

A. A B C D (i) 1 2 3 4
B. A B C D (ii) 3 5 2 1
C. A B C D (iii) 3 5 5 1
D. A B C D (iv) 3 2 5 1

 Multiple Choice QuestionsMultiple Choice Questions

2.

x  R : x - x = 5 is equal to

  • R, the set of all real numbers

  • ϕ, the empty set

  • x  x < 0

  • x  R : x  0


3.

If N denotes the set of all positive integers and if f : N  N efined by f(n) = the sum of positive divisors of n then, f(2k, 3), where k is a positive integers, is

  • 2k + 1 - 1

  • 2(2k + 1 - 1)

  • 3(2k + 1 - 1)

  • 4(2k + 1 - 1)


4.

x = 123 + 13, then x2 - 1x - x2 - 1

  • 1

  • 2

  • 3

  • 12


Advertisement
5.

If a, b, c  0 and belong to the set to {0, 1, 2, 3, ..., 9}, then log10a + 10b + 102c10- 4a + 10- 3b + 10- 2c is equal to

  • 1

  • 2

  • 3

  • 4


6.

nn + 12n + 1 : n  Z 

  • 6k : k  Z

  • 12k : k  Z

  • 18k : k  Z

  • 24k : k  Z


7.

A three digit numbern is such that the last twodigits of it are equal and differ from the first. The number of such n's is

  • 64

  • 72

  • 81

  • 900


Advertisement

8.

If (1 + x)15 = a0 + a1x + ... + a15x15, then r = 115rarar - 1 is equal to

  • 110

  • 115

  • 120

  • 135


C.

120

Given that,1 + x15 = a0 + a1x + a2x2 + ... + a15x15 C015 + C115x + C215x2 + ... C1515x15             = a0 + a1x + a2x2 + ... + a15x15Euating the coefficient of various powers of x, weta0 = C015, a1 =  C115, a2 =  C215, ..., a15 = C1515 r = 115rarar - 1 = r = 115rCr15Cr - 115 = r = 115r15!r!15 - r!15!r - 1!15 - r + 1! = r = 115r - 1!15 - r +1!r!15 - r! = r = 11515 - r + 1 = 15 + 14 + 13 + .. + 2 + 1 = 1515 + 12 = 120


Advertisement
Advertisement
9.

The coefficient of x3y4z5 in the expansion of (xy + yz + xz)6 is

  • 70

  • 60

  • 50

  • None of these


10.

If x < 12, then the coefficient of xr in the expansion of 1 +2x1 - 2x2, is

  • r2r

  • (2r - 1)2r

  • r22r + 1

  • (2r + 1)2r


Advertisement