y = 2e2x - e- x is solution of the differential equation from Ma

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

If In0π4tannxdx, then 1I3 + I5 is

  • 1/4

  • 1/2

  • 1/8

  • 4


52.

If 0π2sin6xdx = 5π32, then the value of - ππsin6x + cos6xdx is

  • 5π8

  • 5π16

  • 5π2

  • 5π4


53.

The solution of the differential equation dydx = yx + ϕyxϕ'yx is

  • yx = k

  • ϕyx = kx

  • yx = k

  • ϕyx = ky


54.

If the integrating factor of the differential equation dydx + Pxy = Qx is x, then P(x) is

  • x

  • x2/2

  • 1/x

  • 1/x2


Advertisement
55.

If c1, c2, c3, c4, c5 and c6  are constants, then the order of the differential equation whose general solution is given by y = c1 cos(x + c2) + c3 sin(x + c4) + c5ex + c6, is

  • 6

  • 5

  • 4

  • 3


Advertisement

56.

y = 2e2x - e- x is solution of the differential equation

  • y2 + y1 + 2y = 0

  • y2 - y1 + 2y = 0

  • y2 + y1 = 0

  • y2 - y1 - 2y = 0


D.

y2 - y1 - 2y = 0

Given that

y = 2e2x - e-x

On differentiating wrt x, we get

y1 = 4e2x + e- x

Now, on again differentiating wrt x, we get

y3 = 8e2x - e- x

Now, y2 - y1 - 2y

= 8e2x - e- x - 4e2x - e- x - 4e2x + 2e- x

= 0


Advertisement
Advertisement