Statement − 1: For every natural number n ≥ 2 Statement −

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60°. He moves away from the pole along the line BC to a point D such that CD = 7 m. From D the angle of elevation of the point A is 45°.
Then the height of the pole is

  • fraction numerator 7 square root of 3 over denominator 2 end fraction. fraction numerator 1 over denominator square root of 3 begin display style minus end style begin display style 1 end style end fraction straight m
  • fraction numerator 7 square root of 3 over denominator 2 end fraction. left parenthesis square root of 3 plus 1 right parenthesis space straight m
  • fraction numerator 7 square root of 3 over denominator 2 end fraction. left parenthesis square root of 3 minus 1 right parenthesis space straight m
  • fraction numerator 7 square root of 3 over denominator 2 end fraction. left parenthesis square root of 3 minus 1 right parenthesis space straight m
314 Views

2.

A die is thrown. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then P (A ∪ B) is 

  • 3/5

  • 0

  • 1

  • 1

177 Views

3.

A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is 1/2. Then the length of the semi−major axis is 

  • 8/3

  • 2/3

  • 5/3

  • 5/3

737 Views

4.

A parabola has the origin as its focus and the line x = 2 as the directrix. Then the vertex of the parabola is at 

  • (0, 2)

  • (1, 0)

  • (0,1)

  • (0,1)

342 Views

Advertisement
5.

The point diametrically opposite to the point P (1, 0) on the circle x2+ y2 + 2x + 4y − 3 = 0 is 

  • (-3,4)

  • (-4,3)

  • (-3,-4)

  • (-3,-4)

303 Views

6.

The conjugate of a complex number is fraction numerator 1 over denominator straight i minus 1 end fraction. Then the complex number is

  • fraction numerator negative 1 over denominator straight i minus 1 end fraction
  • fraction numerator 1 over denominator straight i plus 1 end fraction
  • fraction numerator negative 1 over denominator 1 plus straight i end fraction
  • fraction numerator negative 1 over denominator 1 plus straight i end fraction
118 Views

7.

The perpendicular bisector of the line segment joining P (1, 4) and Q (k, 3) has y−intercept − 4. Then a possible value of k is

  • 1

  • 2

  • -2

  • -2

126 Views

8.

The solution of the differential equation dy over dx space equals space fraction numerator straight x plus straight y over denominator straight x end fraction   satisfying the condition y (1) = 1 is  

  • y = ln x + x

  • y = x ln x + x2

  •  y = xe(x−1)

  •  y = xe(x−1)

128 Views

Advertisement
9.

The mean of the numbers a, b, 8, 5, 10 is 6 and the variance is 6.80. Then which one of the following gives possible values of a and b?

  • a = 0, b = 7 

  • a = 5, b = 2

  • a = 1, b = 6

  • a = 1, b = 6

151 Views

Advertisement

10.

Statement − 1: For every natural number n ≥ 2 fraction numerator 1 over denominator square root of 1 end fraction space plus space fraction numerator 1 over denominator square root of 2 end fraction space plus space..... space plus space fraction numerator 1 over denominator square root of straight n end fraction space greater than space square root of straight n

Statement −2: For every natural number n ≥ 2,straight n greater or equal than 2 comma space square root of straight n left parenthesis straight n plus 1 right parenthesis space end root space less than space straight n plus 1

  • Statement −1 is false, Statement −2 is true

  • Statement −1 is true, Statement −2 is true, Statement −2 is a correct explanation for Statement −1

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.


C.

Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

straight P space left parenthesis straight n right parenthesis space equals space fraction numerator 1 over denominator square root of 1 end fraction space plus space fraction numerator 1 over denominator square root of 2 end fraction space plus space..... space plus space fraction numerator 1 over denominator square root of straight n end fraction
straight P space left parenthesis 2 right parenthesis space equals space fraction numerator 1 over denominator square root of 1 end fraction space plus space fraction numerator 1 over denominator square root of 2 end fraction space greater than space square root of 2
Let space us space assume space that space straight P space left parenthesis straight k right parenthesis space equals space fraction numerator 1 over denominator square root of 1 end fraction space plus space fraction numerator 1 over denominator square root of 2 end fraction space plus space...... fraction numerator 1 over denominator square root of straight k end fraction space plus fraction numerator 1 over denominator square root of straight k plus 1 end root end fraction space greater than square root of straight k plus 1 end root
has space to space be space true.
straight L. straight H. straight S greater than thin space square root of straight k space plus space fraction numerator 1 over denominator square root of straight k plus 1 end root end fraction space equals space fraction numerator square root of straight k space left parenthesis straight k plus 1 right parenthesis end root space plus 1 over denominator square root of straight k plus 1 end root end fraction
since space square root of straight k left parenthesis straight k plus 1 right parenthesis end root space greater than straight k space space left parenthesis for all space straight k greater or equal than 0 right parenthesis
therefore space fraction numerator square root of straight k space left parenthesis straight k plus 1 right parenthesis end root plus 1 over denominator square root of straight k plus 1 end root end fraction space greater than space fraction numerator straight k plus 1 over denominator square root of straight k plus 1 end root end fraction space equals space square root of straight k plus 1 end root
Let space straight p left parenthesis straight n right parenthesis space space equals space square root of straight n space left parenthesis straight n plus 1 right parenthesis end root space less than space straight n plus 1
State space minus 1 space is space correct.
straight P space left parenthesis 2 right parenthesis space space equals space square root of 2 space straight x space 3 end root space less than space 3
If space straight P space left parenthesis straight k right parenthesis space space equals space square root of straight k left parenthesis straight k plus 1 right parenthesis end root space less than space left parenthesis straight k plus 1 right parenthesis space is space true
Now space space straight P space left parenthesis straight k plus 1 right parenthesis space equals space square root of left parenthesis straight k plus 1 right parenthesis left parenthesis straight k plus 2 right parenthesis end root space less than space straight k plus 2 space has space to space be space true
square root of left parenthesis straight k plus 1 right parenthesis left parenthesis straight k plus 2 right parenthesis end root space thin space left parenthesis straight k plus 2 right parenthesis
Hence Statement −2 is not a correct explanation of Statement −1. 
125 Views

Advertisement
Advertisement