The differential equation ydydx + x = c&

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

ex . x5dx is

  • ex[x5 + 5x4 + 20x3 + 60x2 + 120x + 120] + C

  • ex[x5 - 5x4 - 20x3 - 60x2 - 120x - 120] + C

  • ex[x5 - 5x4 + 20x3 - 60x2 + 120x - 120] + C

  • ex[x5 + 5x4 + 20x3 - 60x2 - 120x + 120] + C


12.

A unit vector perpendicular to both the vectors i^ + j^ and j^ + k^

  • - i^ - j^ + k^3

  •  i^ + j^ + k^3

  • i^ + j^ + k^3

  • i^ - j^ + k^3


13.

If a . i^ = a . i^ + j^ = a . i^ + j^ + k^ = 1, then  a is equal to

  • i^ + j^

  • i^ - k^

  • i^

  • i^ + j^ - k^


14.

If a and b are unit vectors and a + b = 1, then a - b is equal to

  • 2

  • 1

  • 5

  • 3


Advertisement
15.

The projection of a = 3i^ - j^ + 5k^ on b = 2i^ + 3j^ + k^ is

  • 835

  • 839

  • 814

  • 14


16.

The value of - 22ax3 + bx + cdx depends on the

  • value of b

  • value of c

  • value of a

  • values of a and b


17.

The area of the region bounded by y = 2x - x2 and the x-axis is

  • 83 sq unit

  • 43 sq unit

  • 73 sq unit

  • 23 sq unit


Advertisement

18.

The differential equation ydydx + x = c represents

  • a family of hyperbolas

  • a family of circles whose centres are on the y-axis

  • a family of parabolas

  • a family of circles whose centres are on the x-axis


D.

a family of circles whose centres are on the x-axis

Given differential equation is

ydydx + x = c    ydy = c - xdx

On integrating both sides, we get

         y22 = cx - x22 + d y2 +x2 - 2cx - 2d = 0

Hence, it represents a family of circles whose centres are on the x-axis.


Advertisement
Advertisement
19.

secxsecx + tanxdx is equal to

  • tanx - secx + C

  • log1 + secx +C

  • secx + tanx +C

  • logsinx - logcosx + C


20.

If fxdx = gx, then fxgxdx is equal to

  • 12f2x

  • 12g2x

  • 12g'x2

  • f'(x)g(x)


Advertisement