let be the roots of the quadratic equation ax2 + bx + c = 0. Observe the lists given below
List-I | List-II | ||
(i) | (A) | (ac2)1/3 + (a2c)1/3 + b = 0 | |
(ii) | (B) | 2b2 = 9ac | |
(iii) | (C) | b2 = 6ac | |
(iv) | (D) | 3b2 = 16ac | |
(E) | b2 = 4ac | ||
(F) | (ac2)1/3 + (a2c)1/3 = b |
The correct match of List-I from List-II is
A. (i) (ii) (iii) (iv) | (i) E B D F |
B. (i) (ii) (iii) (iv) | (ii) E B A D |
C. (i) (ii) (iii) (iv) | (iii) E D B F |
D. (i) (ii) (iii) (iv) | (iv) E B D A |
If and , then observe the following lists
List-I | List-II | ||
(i) | (A) | ||
(ii) | (B) | 3 | |
(iii) | (C) | ||
(iv) | (D) | ||
(E) | |||
(F) | 4 |
Then, correct match of List_I to List-II is
A. (i) (ii) (iii) (iv) | (i) C A B F |
B. (i) (ii) (iii) (iv) | (ii) C A F E |
C. (i) (ii) (iii) (iv) | (iii) A C B F |
D. (i) (ii) (iii) (iv) | (iv) A C F D |
The points in the set (where C denotes the set of all complex numbers) lie on the curve which is a
circle
pair of lines
parabola
hyperbola
If w is a complex cube root of unity, then is equal to
1
A.
If m1, m2, m3 and m4 respectively denote the moduli of the complex numbers 1 + 4i, 3 + i, 1 - i and 2 - 3i, then the correct one, among the following is
m1 < m2 < m3 < m4
m4 < m3 < m2 < m1
m3 < m2 < m4 < m1
m3 < m1 < m2 < m4
If A = 35°, B = 15° and C = 40°, then tan(A) · tan(B) + tan(B) . tan(C) + tan(C) . tan(A) is equal to
0
1
2
3