A pair of perpendicular straight lines passes through the origin

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

If the sum of the distances of a point P from two perpendicular lines in a plane is 1, then the locus of P is a

  • rhombus

  • circle

  • sr==traight line

  • pair o straight lines


32.

The transformed equation of 3x2 + 3y2 + 2xy = 2, when the coordinate axes are rotated through an angle of 45°, is

  • x2 + 2y2 = 1

  • 2x2 + y2 = 1

  • x2 + y2 = 1

  • x2 + 3y2 = 1


33.

If l, m, n are in arithmetic progression, then the straight line b + my + n = 0 will pass through the point

  • (- 1, 2)

  • (1, - 2)

  • (1, 2)

  • (2, 1)


34.

The value of k such that the lines 2x - 3y + k = 0,

3x - 4y - 13 = 0 and 8x - 11y - 33 = 0 are concurrent, is

  • 20

  • - 7

  • 7

  • - 20


Advertisement
35.

The value of A such that λx2 - 10xy +12y2 +5x - 16y - 3 = 0 represents a pair of straight lines, is

  • 1

  • - 1

  • 2

  • - 2


Advertisement

36.

A pair of perpendicular straight lines passes through the origin and also through the point of intersection of the curve x2 + y2 = 4 with x + y = a. The set containing the value of 'a' is

  • {- 2, 2}

  • {- 3, 3}

  • {- 4, 4}

  • {- 5, 5}


A.

{- 2, 2}

To make the given curves x2 + y2 = 4 andx + y = a homogeneous. x2 + y2 - 4x + ya2 = 0 a2x2 + y2 - 4x2 + y2 +2xy = 0  x2(a2 - 4) +y2(a2 - 4) - 8xy = 0Since, this is a perpendicular pair of straight lines.a2 - 4 + a2 - 4 = 0a2 = 4   a =±2Hence, required set of a is {- 2, 2}.


Advertisement
37.

In ABC the mid points of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, AB2 + BC2 + CA2l2 + m2 + n2 = ?

  • 2

  • 4

  • 8

  • 16


38.

If the lines 2x - 3y = 5 and 3x - 4y = 7 are two diameters of a circle of radius 7, then the equation of the circle is

  • x2 + y2 + 2x - 4y - 47 = 0

  • x2 + y2 = 49

  • x2 + y2 - 2x + 2y - 47 = 0

  • x2 + y2 = 17


Advertisement
39.

The inverse of the point (1, 2) with respect to the circle   

x2 + y2 - 4x - 6y + 9 = 0, is

  • 1, 12

  • 2, 1

  • 0, 1

  • 1, 0


40.

If θ is the angle between the tangents from(- 1, 0) to the circle x2 + y2 - 5x + 4y - 2 = 0, then θ is equal to

  • 2tan-174

  • tan-174

  • 2cos-174

  • cot-174


Advertisement