The length of the normal to the curve x = aθ + sinθ, y = a1 - cosθ at θ = π2 is
2a
a2
The maximum value of logxx is
e
2e
1e
In the interval - π4, π4, the number of real solutions of the equations sinxcosxcosxcosxsinxcosxcosxcosxsinx = 0 is
0
2
1
3
C.
Since, sinxcosxcosxcosxsinxcosxcosxcosxsinx = 0⇒ sinxsin2x - cos2x - cosxcosxsinx - cos2x + cosxcos2x - sinxcosx = 0⇒ sinxsin2x - cos2x - 2cos2xsinx - cosx = 0⇒ sinx - cosxsinxsinx + cosx - 2cos2x = 0⇒ sinx - cosxsin2x - cos2x + sinxcosx - cos2x = 0⇒ sinx - cosx2sinx + cosx + cosx = 0⇒ sinx - cosx2sinx + 2cosx = 0Either sinx - cosx2 = 0 or sinx + 2cosx = 0⇒ Either tanx = 1 or tanx = - 2⇒ Either x = π4 or tanx = - 2As x ∈ - π4, π4, tanx ∈ - 1, 1Hence, real solution is only x = π4
If f(x) = xsin1x, x ≠ 0k , x = 0 is continuous at x = 0, then the value of k will be
- 1
None of these
If cotcos-1x = sectan-1ab2 - a2, then x is equal to
b2b2 - a2
a2b2 - a2
2b2 - a2a
2b2 - a2b
Number of solutions ofthe equation
tan-112x + 1 + tan-114x + 1 = tan-12x2 is
4
If f(x) = 4x4x + 2, then f197 + f297 + ... + f9697 is equal to
48
- 48
If f(x) = xpcos1x, x ≠ 00 , x = 0 is differentiable at x = 0, then
p < 0
0 < p < 1
p = 1
p > 1
If xx21 + x3yy21 + y3zz21 + z3 = 0 and x, y, z are all distinct, then xyz is equal to
If A = 1111, then A100 is equal to
100 A
299 A
2100 A
99 A