Let f(x) = x + ax + b, where a, b ∈ R. If f(x) = 0

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMatch The Following

1.

Suppose that E1 and E2 are two events of a random experiment such that P(E1) = 1/4, P(E2/E1) and P(E1/E2) = 1/4, observe the lists given below

        List I                        List II

(A)    P(E2)                  (i) 1/4

(B)    PE1  E2           (ii) 5/8

(C)   PE1/ E2             (iii) 1/8

(D)   PE1/E2              (iv) 3/8

                                  (v) 3/8

                                  (vi) 3/4

The correct matching of the List I from the List II is

 

A. (A) (B) (C) (D) (i) (ii) (iii) (vi) (i)
B. (A) (B) (C) (D) (ii) (iv) (v) (vi) (i)
C. (A) (B) (C) (D) (iii) (iv) (ii) (vi) (i)
D. (A) (B) (C) (D) (iv) (i) (ii) (iii) (iv)

 Multiple Choice QuestionsMultiple Choice Questions

2.

The roots (x - a) (x - a - 1) + (x - a - 1) (x - a - 2) + (x - a) (x - a - 2) = 0, a  R are always

  • equal

  • imaginary

  • real and distinct

  • rational and equal


Advertisement

3.

Let f(x) = x + ax + b, where a, b  R. If f(x) = 0 has all-its roots imaginary, then the roots of f(x) + f'(x) + f"(x) = 0 are

  • real and distinct

  • imaginary

  • equal

  • rational and equal


B.

imaginary

Given, f(x) = x2 + ax + b has imaginary roots. Discriminant, D < 0  a2 - 4b < 0Now, f'x = 2x + af''x = 2Also, fx + f'x + f''x = 0       ...i x2 + ax + b + 2x + a + 2 = 0 x2 + a + 2x + b + a + 2 = 0 x = - a + 2 ± a +22 - 4a + b + 22       = - a + 2 ± a2 - 4b - 42Since,   a2 - 4b < 0 a2 - 4b - 4 < 0Hence, Eq.(i) has imaginary roots.


Advertisement
4.

If α, β, γ are the roots of x3 + 4x + 1 = 0, then the equation whose roots are α3β + γ, β2γ + α, γ2α + β is

  • x3 - 4x - 1 = 0

  • x3 - 4x + 1 = 0

  • x3 + 4x - 1 = 0

  • x3 + 4x + 1 = 0


Advertisement
5.

If f : 2, 3 R is defined by f (x) = x3 + 3x - 2, then the range f(x) iscontained in the interval

  • [1, 12]

  • [12, 34]

  • [35, 50]

  • [- 12, 12]


6.

x  R :2x - 1x3 +4x2 +3x  R equals

  • R - {0}

  • R - {0, 1, 3}

  • R - {0, - 1, - 3}

  • R - 0, - 1, - 3, +12


7.

Using mathematical induction, the numbers an 's are defined by,a0 = 1, an + 1 = 3n2 + n + an, n  0Then an = ?

  • n3 + n2 + 1

  • n3 - n2 + 1

  • n3 - n2

  • n3 + n2


8.

If α and β are the roots of x2 - 2x + 4 = 0, then the value of α6 + β6 is

  • 32

  • 64

  • 128

  • 256


Advertisement
9.

The locus of z satisfying the inequality z + 2i2z + i < 1, where z = x + iy, is

  • x2 + y2 < 1

  • x2 - y2 < 1

  • x2 + y2 > 1

  • 2x2 + 3y2 < 1 


10.

If n is an integer which leaves remainder one when divided by three, then 1 + 3in + 1 - 3in equals

  • - 2n + 1

  • 2n + 1

  • - (- 2)n

  • - 2n


Advertisement