If (1 - x + x2)n = a0 + a1x + ... + a2nx2n, then the value of a0

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The value of cotx - tanxcot2x is

  • 1

  • 2

  • - 1

  • 4


2.

The number of points of intersection of 2y = 1 and y = sin(x), in - 2π  x  2π is

  • 1

  • 2

  • 3

  • 4


3.

The value of 23! +45! + 67! + ...

  • e12

  • e- 1

  • e

  • e- 13


4.

If sum of an infinite geometric series is 4/3 and its Ist term is 3/4, then its common ratio is

  • 7/16

  • 9/16

  • 1/9

  • 7/9


Advertisement
5.

The number of permutations by taking all letters and keeping the vowels of the word COMBINE in the odd places is

  • 96

  • 144

  • 512

  • 576


6.

If C3 n - 1+ C4n - 1 > C3n then n is just greater than integer

  • 5

  • 6

  • 4

  • 7


7.

If in the expansion of (a- 2b)n, the sum of the 5th and 6th term is zero, then the value of ab is

  • n - 45

  • 2n - 45

  • 5n - 4

  • 52n - 4


8.

(23n - 1) will be divisible by n  N

  • 25

  • 8

  • 7

  • 3


Advertisement
9.

Sum of the last 30 coefficients in the expansion of (1 + x)59 , when expanded in ascending power of x is

  • 259

  • 258

  • 230

  • 229


Advertisement

10.

If (1 - x + x2)n = a0 + a1x + ... + a2nx2n, then the value of a0 + a2 + a4 + ... + a2n is

  • 3n + 12

  • 3n - 12

  • 3n - 12

  • 3n + 12


D.

3n + 12

Given,(1 - x + x2)n = a0 +a1x +...+ a2nx2n     ... (i)

x = 1, then from Eq. (i)

1 = a0 + a1 + ... + a2n       ... (ii)

and if x = - 1, then from Eq. (i)

3n = a0 - a1 + a2 - a3 ...+ a2n         ...(iii)

Adding Eqs. (ii) and (iii)

1 + 3n = 2[a0 + a2 + a4 + ... + a2n]

Thus, (1 + 3n)/2 = [a0 + a2 + a4 + ... + a2n]


Advertisement
Advertisement