Inverse of function f(x) = 10x - 10- x10x&nbs

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The value of sinπ2 - sin-1- 32 is

  • 12

  • - 12

  • 1

  • - 1


2.

If a  sin-1x + cos-1x + tan-1x  b, then

  • a = 0, b = π

  • a = 0, b = π2

  • a = π2, b = π

  • None of these


3.

If A is invertible matrix and B is any matrix, then

  • Rank (AB) = Rank(A)

  • Rank (AB) = Rank (B)

  • Rank (AB) > Rank (A)

  • Rank (AB) > Rank (B)


4.

Rank of the matrix A = 122212221 is

  • 0

  • 1

  • 2

  • 3


Advertisement
5.

The equation of tangent of the curve y = be-x/a at the point, where the curve meet y-axis is

  • bx + ay - ab = 0

  • ax + by - ab = 0

  • bx - ay - ab = 0

  • ax + by - ab = 0


Advertisement

6.

Inverse of function f(x) = 10x - 10- x10x + 10- x is

  • log10(2 - x)

  • 12log101 + x1 - x

  • 12log102x - 1

  • 14log102x2 - x


B.

12log101 + x1 - x

Let fx = y, then 10x - 10- x10x + 10- x = y 102x - 1102x + 1 = y          102x = 1 + y1 - y                x = 12log101 + y1 - y       f-1y = 12log101 + y1 - y        f-1x = 12log101 + x1 - x


Advertisement
7.

If sin-1x + sin-1y = 2π3 and cos-1x + cos-1y = π3. Then, (x, y) is equal to

  • (0, 1)

  • (1/2, 1)

  • (1, 1/2)

  • 3/2, 1


8.

If y2 = P(x) be a cubic polynomial, then 2ddxy3d2ydx2 is equal to

  • P'''(x) + P'(x)

  • P''(x)P'''(x)

  • P(x)P'''(x)

  • constant


Advertisement
9.

Let f : R - {x}  R be a function defined by f(x) =  x - mx - n, where m  n. Then

  • f is one-one onto

  • f is one-one into

  • f is many one onto

  • f is many one into


10.

For the equations x + 2y + 3z = 1, 2x + y + 3z = 2 and 5x + 5y + 9z = 4

  • there is only one solution

  • there exists infinitely many solution

  • there is no solution

  • None of the above


Advertisement