In ∆ABC, if a = 2, B = tan-112 and C = 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If A = 3211, then A2 + xA + yI = 0 for (x, y) is

  • (- 4, 1)

  • (- 1, 3)

  • (4, - 1)

  • (1, 3)


2.

The constant term of the polynomial x + 3xx + 2xx + 1x - 1x + 22x3x + 1 is

  • 0

  • 2

  • - 1

  • 1


3.

If a > b > 0, sec-1a + ba - b = 2sin-1x, then x is

  • - ba +b

  •  ba +b

  • -  aa +b

  • aa +b


4.

If x  , x  2n + 1π2, n  Z, then sin-1cosx + cos-1sinxtan-1cotx + cot-1tanx is

  • π2

  • π6

  • π4

  • π3


Advertisement
5.

The function f(x) = [x], where [x] denotes the greatest integer not greater than x , is

  • continuous for all non-integral values of x

  • continuous only at positive integral values of x

  • continuous for all real values of x

  • continuous only at rational values of x


6.

If A is a 3 x 3 non-singular matrix and if A = 3, then 2A- 1 is

  • 24

  • 3

  • 13

  • 124


7.

The inverse of 2010 in the group Q* of all positive rational under the binary operation * defined by a * b = ab2010, a, b  Q+ is

  • 2009

  • 2011

  • 1

  • 2010


8.

If the three function f(x), g(x) and h(x) are such that h(x) = f(x) g(x) and f'(x) g'(x) = c where c is constant, then

f''xfx + g''xgx + 2cfx . gx is equal to

  • h'(x) . h''(x)

  • hxh''x

  • h''xhx

  • hxh'x


Advertisement
9.

The derivative of eax cos(bx) with respect x is reax cos(bx) tan-1ba when a>0,b>0, then a value of r, is

  • a2 + b2

  • 1ab

  • ab

  • a + b


Advertisement

10.

In ABC, if a = 2, B = tan-112 and C = tan-113, then (A, b) equals

  • 3π4, 25

  • π4, 225

  • 3π4, 225

  • π4, 25


C.

3π4, 225

Given that, a = 2In ABC, B = tan-112, C = tan-113We know that in ABC,A +B + C = π          A = π - B - C A = π - tan-112 - tan-113 A = π - tan-112 + 131 - 16 A = π - tan-15656 = π - tan-11 A = π - tan-1tanπ4 A = π - π4 A = π4Now, sinA = sin3π4                   = sin135° = cos45° = 12        sinB = 15    tanB = 12Now, by sine lawasinA = bsinBb = a . sinBsinA = 2 . 1512 = 225 Here,     (A, b) = 3π4, 225


Advertisement
Advertisement