The number of common tangents that can be drawn to the circles x2

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

Evaluate k = 16sin27 - icos27

  • 2i

  • - i

  • i

  • - 2i


2.

If a, b, c are in HP, then the value of b +ab - a + b + cb - c is

  • 0

  • 1

  • 2

  • 3


3.

If x2 - 4x + log1/2(a) = 0 does not have two distinct real roots, then maximum value of a is

  • - 14

  • 116

  • 14

  • None of these


4.

A polygon has 44 diagonals. Find the number of sides.

  • 8

  • 10

  • 11

  • 13


Advertisement
5.

The coefficient of x4 in the expansion of log (1 + 3x + 2x2) is

  • 163

  • - 163

  • 174

  • - 174


6.

In a ABC, if cot(A) cot(B) cot(C) > 0, then the triangle is

  • acute angled

  • right angled

  • obtuse angled

  • does not exist


7.

If 1 + sinθ - cosθ 1 + sinθ + cosθ2 = λ1 - cosθ1 +cosθ, then λ equals

  • - 1

  • 1

  • 2

  • - 2


8.

If the sides of a ABC are in AP and a is the smallest side, then cos(A) equals

  • 3c - 4b2c

  • 3c - 4b2b

  • 4c - 3b2c

  • 4c - 3b2b


Advertisement
Advertisement

9.

The number of common tangents that can be drawn to the circles x2 + y2 - 4x - 6y - 3 = 0 and x2 + y2 + 2x + 2y + 1 = 0 is

  • 1

  • 2

  • 3

  • 4


C.

3

Given circles are

          x2 + y2 - 4x - 6y - 3 = 0      ...(i)

and x2 + y2 + 2x + 2y + 1 = 0       ...(ii)

For circle (i), g1 = - 2, f1 = - 3, c1 = - 3

 Centre C12, 3 and r1 = 4 + 9 + 3 = 4and for circle (ii), g2 = 1, f2 = 1, c2 = 1 Centre C2- 1, - 1 and r2 = 1 + 1 - 1 = 1Now, C1C2 = 2 + 12 + 3 + 12                  = 9 + 16 = 5and r1 + r2 = 4 + 1 = 5So,    C1C2 = r1 + r2

Thus, both the circles touch each other externally.

Hence, number of common tangents = 3


Advertisement
10.

If two circles (x - 1)2 + (y - 3)2 = r2 and x2 + y2 - 8x + 2y + 8 = 0 intersect in two distinct points, then

  • 2 < r < 8

  • r < 2

  • r = 2

  • r > 2


Advertisement