If a, b and c are in arithmetic progression, then the roots of th

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If α + β and α - β are the roots of the equation x2 + px + q = 0, where α, β, p and q are real, then the roots of the equation (p2 - 4q)(p2x2 + 4px) - 16q = 0 are

  • 1α + 1β and 1α - 1β

  • 1α + 1β and 1α - 1β

  • 1α + 1β and 1α - 1β

  • α + β and α - β


2.

The number of solutions of the equation log2x2 + 2x - 1 = 1 is

  • 0

  • 1

  • 2

  • 3


3.

The sum of the series 1 + 12C1n + 13C2n + ... + 1n + 1Cnn is equal to

  • 2n + 1 - 1n + 1

  • 32n - 12n

  • 2n + 1n + 1

  • 2n + 12n


4.

The value of r = 21 + 2 + ... + r - 1r!

  • e

  • 2e

  • e2

  • 3e2


Advertisement
5.

The remainder obtained when 1! + 2! + ... + 95! is divided by 15 is

  • 14

  • 3

  • 1

  • 0


6.

Let 1 + x10 = r = 010crxT and r = 071 + x7 = drxT. If P = r = 05crxT and Q =  r = 03d2r + 1 , then PQ is equal to

  • 4

  • 8

  • 16

  • 32


7.

Two decks of playing cards are well shuffled and 26 cards are randomly distributed to a player. Then, the probability that the player gets all distinct cards is

  • Cr52/C26104

  • 2 × Cr52/C26104

  • 213 × Cr52/C26104

  • 226 × Cr52/C26104


8.

An um contains 8 red and 5 white balls. Three balls are drawn at random. Then, the probability that balls of both colours are drawn is

  • 40143

  • 70143

  • 313

  • 1013


Advertisement
9.

Let R be the set of real numbers and the functions f : R ➔ R and g : R ➔ R be defined by f(x) = x2 + 2x - 3 and g(x) = x + 1. Then, the value of x for which f(g(x)) = g(f(x)) is

  • - 1

  • 0

  • 1

  • 2


Advertisement

10.

If a, b and c are in arithmetic progression, then the roots of the equation ax - 2bx + c = 0 are

  • 1 and ca

  • - 1a and - c

  • - 1 and - ca

  • - 2 and - c2a


A.

1 and ca

Since, a, b and c are in AP.

 2b = a + c

Given, quadratic equation,

ax2 - 2bx + c = 0

    ax2 - a + cx + c = 0             2b = a + c    ax2 - ax - cx + c = 0 axx - 1 - cx - 1 = 0          x - 1ax - c = 0 x = 1, ca


Advertisement
Advertisement