A circle passes through the point (3, 4) and cuts the circle x2&n

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMatch The Following

1.

Given the circle C with the equation x+ y2 - 2x + 10y - 38 = 0. Match the List I with the List II given below concerning C
  List I   List II
A The equation of the polar of (4, 3)with respect to C I y + 5 = 0
B The equation of the tangent at (9, - 5) on C II x = 1
C The equation of  the normal at(- 7, - 5) on C III 3x + 8y = 27
D The equation of the diameter of  C passing through (1,3) IV x + y = 3
    V x = 9

The correct answer is

A. A B C D (i) III I V II
B. A B C D (ii) IV V I II
C. A B C D (iii) III V I II
D. A B C D (iv) IV II I V

 Multiple Choice QuestionsMultiple Choice Questions

2.

The equation of a straight line passing through the point (1, 2) and inclined at 45° to the line y = x + 1 is

  • 5x + y = 7

  • 3x + y = 5

  • x + y = 3

  • x - y + 1 = 0


3.

The distance between the parallel lines given byx + 7y2 + 42x +7y - 42 = 0 is

  • 45

  • 42

  • 2

  • 102


4.

If the area of the triangle formed by the pair of lines 8x- 6xy + y= 0 and the line 2x + 3y = a is 7, then a is equal to

  • 14

  • 142

  • 282

  • 28


Advertisement
5.

If the line x + 3y = 0 is the tangent at (0, 0) to the circle of radius 1, then the centre of one such circle is

  • (3, 0)

  • - 110, 310

  • 310, - 310

  • 110, 310


Advertisement

6.

A circle passes through the point (3, 4) and cuts the circle x+ y= aorthogonally; the locus of its centre is a straight line. If the distance of this straight line from the origin is 25, then a is equal to

  • 250

  • 225

  • 100

  • 25


B.

225

Since, the circle passes through (3, 4) and cuts the circle x2 + y2 = a2 orthogonally x - 32 + y - 42 = 0  . . . iAlso, x2 + y2 - a2 = 0        . . .  ii Equation of radical axis,x - 32 + y - 42 - x2 + y2 - a2 = 0  x2 - 6x + 9 + y2 +16 - 8y - x2 - y2 + a2 = 0 - 6x - 8y + 25 + a2 = 0 6x - 8y -25 - a2 = 0 . . . iiiNow, the distance from (0, 0) to eq.iii, we get60 - 80 - 25 - a236 + 64 = 25 25 + a210 = 25   25 + a2 = 250            a2 = 225


Advertisement
7.

The equation to the line joining the centres of the circles belonging to the coaxial system of circles 4x+ 4y- 12x + 6y - 3 + λ(x + 2y - 6) = 0 is

  • 8x - 4y - 15 = 0

  • 8x - 4y + 15 = 0

  • 3x - 4y - 5 = 0

  • 3x - 4y + 5 = 0


8.

Let x + y = k be a normal to the parabola y2 = 12x. If p is length of the perpendicular from the focus of the parabola onto this normal, then 4k - 2p2 is equal to

  • 1

  • 0

  • - 1

  • 2


Advertisement
9.

If the line 2x + 5y = 12 intersects the ellipse 4x+ 5y2 = 20 in two distinct points A and B,then mid-point of AB is

  • (0, 1)

  • (1, 2)

  • (1, 0)

  • (2, 1)


10.

Equation of one of the tangents passing through(2, 8) to the hyperbola 5x2 - y2 = 5 is

  • 3x + y - 14 = 0

  • 3x - y + 2 = 0

  • x + y + 3 = 0

  • x - y + 6 = 0


Advertisement