The function f(x) = x2a,      

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The value of the expression 1 . (2 - w)(2 - w2) + 2 . (3 - w)(3 - w2) + ... + (n - 1)(n - w2), where w is an imaginary cube root of unity is

  • nn + 122

  • nn + 122 - n

  • nn + 122 + n

  • None of these


2.

1 = xbbaxbaax and 2 = xbax are the given determinants, then

  • 1 = 322

  • ddx1 = 32

  • ddx1 = 322

  • 1 = 3232


3.

If A and B are square matrices of the same order and A is non-singular, then for a positive integer n, (A-1BA)n is equal to

  • A-nBnAn

  • AnBnA-n

  • A-1BnA

  • n(A-1BA)


Advertisement

4.

The function f(x) = x2a,             0  x < 1a,                  1  x < 22b2 - 4bx2, 2  x <  is continuous for 0  x < ,then the most suitable values of a and b are

  • a = 1, b = - 1

  • a = - 1, b = 1 + 2

  • a = - 1, b = 1

  • None of the above


C.

a = - 1, b = 1

Given fx = x2a,             0  x < 1a,                  1  x < 22b2 - 4bx2, 2  x <  is continuous function for 0  x < , function is continuous at x = 1.

 a = ± 1Since, f is continuous at x = 2. 2b2 - 4b2 = a    b2 - 2b = aWhen a = 1, b2 - 2b = 1      b = 1 ± 2When a = - 1, b2 - 2b = - 1 b - 12 = 0  b = 1Hence, a = - 1 and b = 1 are most suitable values.


Advertisement
Advertisement
5.

If f(x) = 1,                  x < 01 + sinx,    0  x < π2,then at x = 0 the derivative f'(x) is

  • 1

  • 0

  • infinite

  • not defined


6.

Let P(x) = a0 + a1x2 + a2x2 + a3x6 + ... + anx2n be a polynomial in a real variables with 0 < a0 < a1 < a2 < .... < an. The function P(x) has

  • neither a maxima nor a minima

  • only one maxima

  • both maxima and minima

  • only one minima


7.

If tan-1x2 + cot-1x2 = 5π28, then x is equal to

  • - 1

  • 1

  • 0

  • None of these


8.

α32csc212tan-1αβ + β32sec21212tan-1βα is equal to

  • α - βα2 + β2

  • α + βα2 - β2

  • α + βα2 + β2

  • None of the above


Advertisement
9.

dx9 + 16sin2x is equal to

  • 13tan-13tanx5 + c

  • 15tan-1tanx15 + c

  • 115tan-1tanx5 + c

  • 115tan-15tanx3 + c


10.

x2dxxsinx + cosx2 is equal to

  • sinx + cosxxsinx + cosx + c

  • xsinx - cosxxsinx + cosx + c

  • sinx - xcosxxsinx + cosx + c

  • None of these


Advertisement