The set of solutions satisfying both x2 + 5x + 6 ≥ 0 and

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If the harmonic mean between the roots of (5 + 2) x2 - bx + (8 + 25) = 0 is 4, then the value of b is

  • 2

  • 3

  • 4 - 5

  • 4 + 5


Advertisement

12.

The set of solutions satisfying both x2 + 5x + 6  0 and x2 + 3x - 4 < 0 is

  • (- 4, 1)

  • - 4, - 3  (- 2, 1)

  • - 4, - 3  - 2, 1

  • - 4, - 3   - 2, 1


B.

- 4, - 3  (- 2, 1)

Given, x2 + 5x + 6  0 and x2 + 3x - 4 < 0 x2 + 2x + 3x + 6  0and x2 + 4x - x - 4 < 0 xx + 2 + 3x + 2  0and xx + 4 - 1x + 4 < 0 x + 2x + 3  0and x + 4x - 1 < 0

x  - , - 3  - 2,  and x  (- 4, 1)Common condition is x  - 4, - 3  - 2, 1


Advertisement
13.

If the roots of x3 - 42x2 + 336x - 512 = 0, are in increasing geometric progression, then its common ratio is

  • 2 : 1

  • 3 : 1

  • 4 : 1 

  • 6 : 1


14.

If α and β are the roots of the equation x2 - 2x + 4 = 0, then α9 + β9 is equal to

  • - 28

  • 29

  • - 210

  • 210


Advertisement
15.

If a complex number z satisfied z2 - 1 = z2 + 1, then z lies on

  • the real axis

  • the imaginary axis

  • y = x

  • a circle


16.

The period of f(x) = cosx3 + sinx2 is

  • 2π

  • 4π

  • 8π

  • 12π


17.

If sinθ + cosθ = p and sin3θ + cos3θ = q, then p(p2 - 3) is equal to

  • q

  • 2q

  • - q

  • - 2q


18.

If tanπcosθ = cotπsinθ, then a value of cosθ - π4 among the following is

  • 122

  • 12

  • 12

  • 14


Advertisement
19.

The  set  of solutions  of the  system  of equationsx + y = 2π3and cosx + cosy = 32,where x, y are real, is

  • x, ycosx - y2 = 12

  • x, ysinx - y2 = 12

  • x, ycosx - y = 12

  • Empty set


20.

The origin is translated to (1, 2). The point(7, 5) in the old system undergoes the following transformations successively.

I. Moves to the new point under the given translation of origin.

II. Translated through 2 units along the negative direction of the new X-axis.

III. Rotated through an angle - about the 4 origin of new system in the clockwise direction. The final position of the point (7, 5) is

  • 92, - 12

  • 72, 12

  • 72, - 12

  • 52, - 12


Advertisement