The value of limx→0∫0x2cost2dxxsinx from Mathemati

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

71.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


A.

1

limx00x2cost2dxxsinx                 00 form= limx0cosx4 × 2xsinx + xcosx     L' Hospital's rule= limx0 2cosx4 - x sinx4 × 4x3cosx + cosx - xsinx= 2cos0 - 0cos0 + cos0 - 0= 21 + 1= 1


Advertisement
72.

The curve y = cosx + y1/2 satisfies the differential equation

  • 2y - 1d2ydx2 + 2dydx2 + cosx = 0

  • d2ydx2 + 2dydx2 + cosx = 0

  • 2y - 1d2ydx2 -  2dydx2 + cosx = 0

  • 2y - 1d2ydx2 - dydx2 + cosx = 0


73.

The solution of the differential equation

dydx + yxlogex = 1x

under the condition y = 1 when x = e is

  • 2y = logex +1logex

  • y = logex +2logex

  • ylogex = logex +1

  • y = logex +e


74.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


Advertisement
75.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


76.

If u(x) and u(x) are two independent solutions of the differential equation

d2ydx2 + b dydx + cy = 0,

then additional solution(s) of the given differential equation is(are)

  • y = 5u(x) + 8v(x)

  • y = c1{u(x) - v(x)} + c2v(x), c1 and c2 are arbitrary constants

  • y = c1u(x)v(x) + c2u(x)v(x), c1 and c2 are arbitrary constant

  • y = u(x)v(x)


77.

For two events A and B, let P(A) = 0.7 and P(B) = 0.6. The necessarily false statement(s) is/are

  • PA  B = 0.35

  • PA  B = 0.45

  • PA  B = 0.65

  • PA  B = 0.28


Advertisement