Suppose M = ∫0π/2cosxx + 2dx, N&n

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


72.

The curve y = cosx + y1/2 satisfies the differential equation

  • 2y - 1d2ydx2 + 2dydx2 + cosx = 0

  • d2ydx2 + 2dydx2 + cosx = 0

  • 2y - 1d2ydx2 -  2dydx2 + cosx = 0

  • 2y - 1d2ydx2 - dydx2 + cosx = 0


73.

The solution of the differential equation

dydx + yxlogex = 1x

under the condition y = 1 when x = e is

  • 2y = logex +1logex

  • y = logex +2logex

  • ylogex = logex +1

  • y = logex +e


74.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


Advertisement
Advertisement

75.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


D.

2π + 4

Given, M = 0π/2cosxx + 2dxand      N = 0π/4sinxcosxx + 12dx       N = 0π/412sin2xx + 12dxPut 2x = t dx = dt2

 N = 0π/2sint4t2 + 12dt        = 0π/2sintt + 22dt       = 0π/2sinxx + 22dx M - N = 0π/2cosx × 1x + 2dx                       - 0π/2sinxx + 22dx                 = sinxx + 20π/2 - 0π/2- sinxx + 22dx                       - 0π/2sinxx + 22dx                 = sinπ2π2 + 2                 = 1π + 42                 = 2π + 4


Advertisement
76.

If u(x) and u(x) are two independent solutions of the differential equation

d2ydx2 + b dydx + cy = 0,

then additional solution(s) of the given differential equation is(are)

  • y = 5u(x) + 8v(x)

  • y = c1{u(x) - v(x)} + c2v(x), c1 and c2 are arbitrary constants

  • y = c1u(x)v(x) + c2u(x)v(x), c1 and c2 are arbitrary constant

  • y = u(x)v(x)


77.

For two events A and B, let P(A) = 0.7 and P(B) = 0.6. The necessarily false statement(s) is/are

  • PA  B = 0.35

  • PA  B = 0.45

  • PA  B = 0.65

  • PA  B = 0.28


Advertisement